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CHAPTER 1

Combining Information Across
Genome-wide Scans

Carol J. Etzel and Tracy J. Costello
University of Texas M. D. Anderson Cancer Center, Houston, Texas

1.1 Introduction

With the formation of international consortia to investigate complex disorders and
a variety of cancers, meta-analysis is quickly becoming a valuable tool to combine
linkage results and narrow chromosomal regions of interest. The presumed etiology
of a complex disease is a combination of effects from multiple genes and the en-
vironment. The possibility of identifying some of these genes, which most likely
have small effects, from a single study using traditional linkage analysis methods, is
small. Instead, pooling raw data across independent studies (i.e.a mega-analysis) or
pooling linkage results across independent studies (i.e. a meta-analysis) may be the
best means to identify these numerous genes with typically small effects. Among-
study heterogeneity, which may include differing marker maps, marker informativ-
ity, sample sizes, phenotype definition, ascertainment schemes, and linkage tests, can
be problematic for a meta-analysis. Methods proposed to handle such problems are
discussed here.

The basis of meta-analytic methods in genetic linkage is derived from pooling meth-
ods that have been available in the field of statistics for over 75 years. Such distin-
guished statisticians as Fisher (1925), Tippett (1931), and Pearson (1933) provide
the earliest references to meta-analysis. These methods were based on testing a con-
sensus or omnibus null hypothesis (i.e., all null hypotheses from the individual stud-
ies are true) by combining thep-values from each of the individual studies. These
methods are nonparametric in the sense that they do not rely on any distributional
assumptions regarding the data in the individual studies; however, it is assumed that
each study tests a common (and combinable) null hypothesis.Folks (1984) provides
an excellent and detailed review of these early meta-analytic methods.

Meta-analysis for genome-wide scans has roots in methods developed for individual
marker meta-analysis. These methods involved either pooling p-values (using the
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4 COMBINING INFORMATION ACROSS GENOME-WIDE SCANS

method of Fisher (1925)) or pooling estimates of genetic effects or of proportion
of alleles shared identical by descent (ibd) among relativepairs (Li and Rao, 1996;
Gu et al., 1998). However, current technology has evolved toallow investigators to
perform full genome scans and therefore, linkage testing isnot done for a single
marker anymore. In this chapter, we review recent applications and extensions of
meta-analytic methods for combining information across independent genome scans.
We also provide strategies to choose a method suited to the scientific goals.

1.2 Meta-Analytic Methods for Genome Scans

In this section, we review meta-analytic methods that have been proposed and applied
to genome-wide scan studies. Our coverage of such methods may not be exhaustive
as we have tried to focus on such methods where power and type Ierror have been
evaluated or methods (due to their ease of application) thathave been widely used.

1.2.1 Meta-analytic methods based onp-values and tests of significance

As mentioned in the Introduction, general applications of meta-analysis have been
developed from methods based on combiningp-values. The method proposed by
Fisher (1925) has been widely used in genetic linkage and many extensions have
been developed for meta-analyses involving genome-wide scans. Suppose that we
wish to complete a meta-analysis onk studies. Each studyk hasm markers. LetMst

denote thetth marker,t = 1, . . . , m, from studys, for s = 1, . . . , k. Further define
pst as thep-value that provides evidence for linkage at the markerMst. We are not
assuming that each study used the same sampling scheme or linkage test; however
the studies must be testing the same null hypothesis of no linkage. Using Fisher’s
method, we can define

X2
t = −2

k
∑

s=1

ln(pst) (1.1)

as the combined evidence for linkage at markerM·t across all studies. We can further
define thep-value associated withX2

t as

Pt = P(χ2
2k > X2

t ), (1.2)

whereχ2
2k is distributed as a chi-square variate with2k degrees of freedom. The

power and type I error of this method was evaluated by Guerra et al. (1999) where a
per marker alpha level of 0.1% was used to account for genome-wide testing. They
concluded that although Fisher’s method is applicable for genome scans, the power
to detect linkage using this method is not equivalent to thatachieved by pooling raw
data.

One of the caveats to using this method to carry out a genome-wide meta-analysis
is that an investigator is not guaranteed that all of the studies included in a meta-
analysis will have used the exact same marker map. Or if the investigator is relying on
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published data, it is not guaranteed that results of all linkage studies are published, or
of those that have been published, that results for all markers involved in a particular
study will be readily available. Instead only information on local minimump-values
may reach publication. Therefore, the straightforward application of Fisher’s method
may not be feasible. Alternatives to Fisher’s method have been proposed (informally
and formally) in order to apply this meta-analytic method across whole regions of the
human genome instead of single loci. One such informal application was proposed
by Allison and Heo (1998) to combine data from several studies that used different
tests for linkage and different markers to detect linkage within the HumanOBregion.
Their technique involved obtaining a singlep-value within theOB region from each
of five published studies that investigated linkage to body mass index using different
testing procedures for different sets of markers. Fisher’smethod was then used to
combine thep-values across the five studies. They concluded that meta-analysis is
a vital statistical tool that highlights the importance of published literature in the
absence of available raw data and increases the power to detect genes influencing
complex traits. They note that their approach illustrates that one can conduct a meta-
analysis over multiple linkage studies investigating a single phenotype despite what
they describe as “worst case conditions.” However, we arguethat the situations that
Allison and Heo describe are realistic of early linkage publications and worst case
conditions are those in which no meta-analysis can be performed.

Badner and Gershon (2002b) formally considered a similar modification of Fisher’s
method so that meta-analysis can be performed for regions across the human genome
instead of one marker at a time. In their paper, they defined equation (1.2) as the
Multiple Scan Probability (MSP) withp∗st substituting forpst, wherep∗st is defined as
the minimum observedp-value for studysover a specified linkage regiont corrected
for the size of the linkage region. Their correction factor was based on the Feingold
et al. (1993) estimate of the probability of ap-value being observed in a specified
region size, namely

p∗st = Cpst + 2λGZ(pst)φ(Φ−1(pst))V [Φ−1(pst)
√

4λ∆] (1.3)

wherepst is the observedp-value from studys over regiont, C is the number of
chromosomes,λ is the rate of crossovers per Morgan (which varies based on the
linkage method employed and family structure), G is the sizeof region t in Mor-
gans,Φ−1(·) is the standard normal inverse function,φ(·) is the normal density
function,∆ is the average distance in Morgans between adjacent markersand the
functionV is a discreteness correction factor for∆. Feingold et al. (1993) show that
V (x) ≈ exp(−0.583x), for x < 2. Under certain conditions, they also show that
equation (1.3) is equivalent to the Lander and Kruglyak (1995) p-value correction
factor. Badner and Gershon (2002b) show via simulation thatthe type I error rate for
this modification is at least as low as for any single genome scan study and that power
to detect linkage using this method is equivalent to that of pooling raw data. This
method has been applied to studies involving autism (Badnerand Gershon, 2002b)
and bipolar disorder and schizophrenia (Badner and Gershon, 2002a).

Another caveat to applying Fisher’s method to genome-wide scans is that many
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widely used linkage tests are one-sided (i.e., LOD scores have a lower bound of 0)
whereas the distributional assumptions for Fisher’s original method assume that the
p-values were derived from two-sided tests. Province (2001)suggested an extension
of Fisher’s general method to adjust for the potential bias of combining linkage re-
sults from such one-sided tests. Citing the one-to-one correspondence between LOD
scores andp-values (Ott, 1999)

pst = 1 − Φ[sign(LODst)
√

2ln(10)|LOD|], (1.4)

whereΦ(·) is the standard normal distribution function, Province recommended that
LOD scores equal to zero should be assigned ap-value equal to 1

2ln(2)
≈ 0.72 in-

stead of equal to 0.50 as given by equation (1.4) or equal to 1.0 as suggested by
maximum-likelihood theory. By doing so, the resulting teststatistic obtained from
Fisher’s method usingp-values extracted from published or derived LOD scores
would roughly follow the assumed chi-square distribution with the appropriate num-
ber of degrees of freedom (2 times the number of studies) under the null of no link-
age. This extension of Fisher’s method has been applied to genome scan studies
involved in the National Heart, Lung and Blood Institute Family Blood Pressure Pro-
gram looking for obesity- related genes (Wu et al., 2002), hypertension-related genes
(Province et al., 2003) and diabetes (An et al., 2005).

The Fisherp-value method and its subsequent extensions do not necessarily account
for among-study heterogeneity with one of the most obvious differences being sam-
ple size and hence admittedly are subject to potential biases from not accounting for
such differences among studies. Although decision criteria could be developed such
that only studies that are most homogeneous (with respect tosample size or pedigree
selection) be included in a meta-analysis, this may excludetoo many studies with
viable linkage information and hence limit the sample size for the meta-analysis (see
discussion below). Rice (1990) suggested a reparameterization of Fisher’s method
such that the evidence for linkage from each study can be weighted by the corre-
sponding study’s sample size. In doing so, he suggested thatthe p-value,pst, be
transformed into a standard normal variate,zst = Φ−1(pst) whereΦ−1(·) is the
standard normal inverse function. A weighted average of thez-values at markert (or
regiont if applying this reparameterization to the Badner and Gershon extension) can
be calculated

z·t =

∑k
s=1 Nszst

∑k
s=1 Ns

whereNs is the sample size (number of pedigrees, number of sib-pairs, etc.) for
studys. Under the omnibus null hypothesis of no linkage,z·t/

√

V ar(z·t) follows a
standard normal distribution where

V ar(z·t) =

∑k
s=1 N2

s

(
∑k

s=1 Ns)2
.

Other novel meta-analytic methods for genome scans that usep-values or other out-
comes of significance tests involving linkage which are not extensions of Fisher’s
method have been proposed specifically for genome-scan meta-analysis. One such
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widely used method, the Genome Search Meta-analysis Method(GSMA), devel-
oped by Wise et al. (1999) is based on a nonparametric rankingof p-values or LOD
scores within specified genetic regions (or bins). Suppose that we have split the chro-
mosomes intom bins. For each genome-scan studys (s = 1, . . . , k =number of total
studies) the most significant linkage result (whether it bep-value, LOD score or an-
other linkage test statistic) within each bint (t = 1, . . . , m) is identified. The bins
are then ranked within each study where the most significant bin receives the highest
rank. The ranks for each bin are then summed across the studies, such that

Vt =

m
∑

s=1

R(Xst) (1.5)

whereXst is the most significant linkage result for bint of studys, andR(·) is the
ranking function. As with Fisher’s method, there are no assumptions that each study
used the same sampling scheme or linkage test, or that each genome scan used the
same set of markers. Additionally, however, they showed through simulation that the
GSMA is useful when studies use different ascertainment schemes, marker maps,
or statistical methods to detect linkage. citetWise1999 derived the null distribution
of Vt given in (1.5) and Koziol and Feng (2004) refined the derivation of the null
distribution using probability generating functions and provided approximations to
the GSMA null distribution.

Wise (2001) further proposed an extension of the GSMA methodsuch that candidate
region studies can be included in the meta-analysis with genome-wide studies. In
this extension, a simulation procedure is developed to assign ranks to the candidate
regions where the ranks reflect the expected ranks under the null hypothesis of no
linkage for a genome-wide study. By assigning the ranks to the candidate regions
in this manner, Wise concludes that the false positive rate is not inflated due to the
higher marker density of candidate region studies.

Babron et al. (2003) updated the GMSA method by first replacing the rankVt in
equation (1.5) with the average rank of bint and the ranks of its two flanking bins,
defined asV−t and V+t in order to adjust for arbitrary bin construction. Second,
they defined a weighting scheme for the ranks such that the rank of studys in bin
t, namelyXst in (1.5), is weighted by the number of pedigrees in studys in order
to account for differing information content across studies. Although Babron et al.
(2003) suggested weights to account for differing information content, a formal test
for heterogeneity among the studies for the GSMA method was not introduced until
2005. Zintzaras and Ioannidis (2005b) propose three weighted metrics to measure
among-study heterogeneity for the GSMA method: 1. sum of theweighted squared
mean rank deviations, 2. sum of the weighted absolute mean rank deviations and 3.
weighted sum of the distinct absolute rank differences. Furthermore, Zintzaras and
Ioannidis (2005a) have developed a software program HEGESMA to perform the
GSMA meta-analysis (unweighted or weighted as specified by the user) as well as
provide the user with heterogeneity results.

In their original paper, Wise (2001) suggested a bin width of30 cM, but recently,
Marazita et al. (2004) proposed repeating the GSMA with variable bin-length starting
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points in order to determine minimum regions of maximum significance (MRMS).
The resulting bin-shifting method identifies narrower regions of positive findings
compared to the original GSMA which then leads to narrower regions to be followed-
up with fine-scale mapping.

Since its original publication, the GSMA has been the most widely used meta-analytic
method for genome scans, specifically due to its ease of use and invariance to whether
the studies are from one-sided or two-sided tests or if only the most significant results
have been reported. A number of investigators have applied the GSMA method to a
variety of complex diseases: multiple sclerosis and other autoimmune diseases (Wise
et al., 1999; Fisher et al., 2003; Sagoo et al., 2004), inflammatory bowel disease
(Williams et al., 2002; van Heel et al., 2004), asthma (Wise,2001), celiac disease
(Babron et al., 2003), schizophrenia and bipolar disorders(Levinson et al., 2003;
Lewis et al., 2003; Segurado et al., 2003), obesity (Johnsonet al., 2005), diabetes
(Demenais et al., 2003), coronary heart disease (Chiodini and Lewis, 2003) and hy-
pertension (Liu et al., 2004; Koivukoski et al., 2004) to name a few.

1.2.2 Meta-analytic methods based on effect sizes

A meta-analysis based on combining the results from significance tests can be limited
or misleading, especially in cases where the concordance ordiscordance of signifi-
cant linkage between two studies may not reflect the existence of true linkage, but
rather may be based on the amount of heterogeneity between the studies. Although
adjustments for heterogeneity have been proposed for thesemethods, combining ef-
fect sizes may be a better approach as many of these methods are based on random
effects models that naturally allow the user to adjust for among-study heterogeneity.

Loesgen et al. (2001) developed a meta-analytic test that computes a weighted aver-
age estimate of score statistics

ZMAt
=

∑k
s=1 wstZst

√

∑k
s=1 w2

st

(1.6)

whereZst is the NPL score statistic andwst is the assigned weight from studysat po-
sition t. They proposed several weighting schemes such as sample size, information
content and an exponential function based on marker distance. Dempfle and Loes-
gen (2004) compared the power of the method proposed by Loesgen et al. (2001) to
Fisher’s method, the GSMA and otherp-value based meta-analytic methods. They
showed that meta-analysis performed using weighted effectsizes had more power
to detect linkage than thep-value methods with nominal increases in false positive
rates. Further, they found that their method based on effectsizes was more robust and
consistent across simulation aspects compared to thep-value based methods.

Etzel and Guerra (2002) developed a meta-analysis technique to combine Haseman-
Elston test statistics across studies that have distinct marker maps. For this method
they suppose that̂βst, the Haseman-Elston slope estimate (Haseman and Elston,
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1972), andS2
st, the corresponding variance estimate ofβ̂st for the markert of study

s are available for each ofk studies. They further define{Lq, q = 1, . . . , v} as the
set of analysis points such thatL1 andLt are at each endpoint of a chromosome seg-
ment, respectively, and the distance between any two adjacent pointsLi andLi+1 is
constant and equal to L/t where L is the length of the chromosome segment. For each
analysis point, they calculate the statisticsβ̂stq andS2

stw utilizing markers withinD
cM of Lq, where

β̂stq =
β̂st

[1 − 2θstq]2
andSstq =

S2
st

[1 − 2θstq]4
.

The valueθstq is the recombination fraction between markert of studysand analysis
pointLq as estimated using a general mapping function, for example,Kosambi. Next,
they calculate the weighted least-squares estimateβ̃q atLq,

β̃q =

∑k
s=1

∑nsq

t=1 wstβ̂stq
∑k

s=1

∑nsq

t=1 wst

andwst =
1

σ2
B + S2

stq

wherek is the number of studies andnsq is the number of markers withinD cM of
Lq for studysandσ2

B is between-study variance. The estimatorσ̂2
Bq

for σ2
B atLq is

σ̂2
Bq

=
1

∑k
s=1 nsq − 1

k
∑

s=1

nsq
∑

t=1

[β̂stq − β̄··q]
2 − 1

∑k
s=1 nsq

k
∑

s=1

nsq
∑

t=1

S2
stq,

whereβ̄··q is the average of thêβstq that are withinD cM of Lq. The variance of̃βq

is 1/
∑k

s=1

∑nsq

t=1 wst. The analysis pointLq′ such thattq′ = β̃q′/
√

V ar[β̃q′] is min-
imum and significant at a specified level is the point estimateof location of the QTL.

Likewise, the estimate of genetic variance is given byσ̂2
g =

β̃q′
−2 . Etzel and Guerra

(2002) further describe a bootstrapping procedure to construct confidence intervals
for location of the putative QTL and genetic variance. Through simulation, they show
that the empirical power using this procedure remained higheven when power at the
individual study level was low. This procedure was used to assess linkage of im-
munoglobulin E (IgE), an asthma related quantitative trait, using the nine data sets
provided by the Genetic Analysis Workshop 12 and found suggestive linkage for two
regions on chromosome 4 and one region on chromosome 11.

The method proposed by Loesgen et al. (2001) assumes that allstudies use the same
marker map but different linkage tests and the method proposed by Etzel and Guerra
allows for differing marker maps among the studies involved; however, the Etzel
and Guerra method is limited by the fact all studies must use the same linkage test.
Etzel et al. (2005) (***GAW14) proposed a meta-analytic procedure that combines
the methods of Loesgen et al. (2001) and Etzel and Guerra (2002) and results in a
more flexible procedure to combine effect sizes across linkage studies that perform
different linkage tests on different marker maps. The resulting Meta-Analysis for
Genome Studies (MAGS) method is based on a weighted average of effect sizes that
are obtained through the reported linkage summary statistics. Suppose that we wish
to complete a meta-analysis onk studies. Each studyk hasmk number of markers.
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It is not assumed that the studies have the same number of markers,mi 6= mk, i 6=
j, nor it is assumed that the studies have the same marker maps.For a specified
chromosome, letMst denote thetth marker from studys, for s = 1, . . . , k andt =
1, . . . , mk. Define{Lq, q = 1, . . . , l} as the set of analysis points such that theLq

are equally spaced across the chromosome. For each set ofMst on a chromosome, let
Zst be the associated score statistic. As noted by Dempfle and Loesgen (2004),Zst

can be the NPL score statistic as most standard multipoint linkage analysis software
packages includes the calculation of such statistics. However,Zst can also be derived
from other linkage related statistics, such as an HLOD scoreor even ap-value with
the correct transformation (see Appendix A). For each analysis pointLq, calculate
the weighted normal variate:

ZMAq
=

∑k
s=1

∑mk

t=1 Iq{Mst}wstqZst
√

∑k
s=1

∑mk

t=1 Iq{Mst}w
2
stq

,

wherewstq is the weight given to markerMst. The indicator functionIq{Mst} is
defined as 1 if marker is within a set distanceD cM from analysis pointLq and 0
otherwise. The weightwstq for markerMst can be a function of study sample size,
information content at that marker, and/or distance (recombination fraction,θstq)
between markerMst and analysis pointLq, saywstq = f(ns)g(ICq{Mst})h(θstq).

Thep-value for each analysis location then be compared to a set level to determine
areas with combined evidence for linkage. NOTE: If all studies use the same marker
map, then the combined set of markers can replace the analysis pointsLq and the
expression forZMAt

simplifies to the statistic proposed by Dempfle and Loesgen
(2004). Etzel et al. (2005) applied this procedure to the simulated data from the Ge-
netic Analysis Workshop 14 and correctly identified the disease loci on chromosomes
1, 3 and 5; however, found low evidence of linkage to the disease modifier genes on
chromosomes 2 and 10.

1.3 Choosing a method to best suit your analytic needs

Data can be obtained from published sources, open-source websites or through con-
sortia group agreements. At times, the researcher may be limited in choosing a pre-
ferred meta-analytic method due to the type of data available for a meta-analysis:
complete data on all studies through a consortium; data obtained by contacting cor-
responding authors from published articles; data from published reports; or some
combination of these three. However, the researcher who is able to obtain the data
of his/her choosing should then select the meta-analysis method based on the most
robust methodology for identifying linkage within each individual study. Below, we
propose some scenarios that reflect reasonable situations in which a meta-analysis
would be performed and provide advice regarding the type of meta-analytic method
to use.
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1.3.1 Scenario 1: Raw data available on all studies

This scenario could arise when the researcher is a member of adata consortium
whereby members of the consortium freely share all data fromtheir individual stud-
ies. For a meta-analysis, this is the most ideal situation since the researcher is rela-
tively free to reanalyze the data (separately from each study) using a preferred linkage
method and then combine the resulting linkage outcome usingany one of the above
mentioned meta-analysis methods. In order fully account for between-study hetero-
geneity, the researcher should choose one of the meta-analysis methods that allows
for such an adjustment (Dempfle and Loesgen (2004), Etzel et al. (2005) or Zintzaras
and Ioannidis (2005b)). Even if the marker maps are different among the studies in
the consortium, the researcher could develop a simple scheme to align the marker
maps in order to perform the meta-analysis. The researcher even has the option to
not perform a meta-analysis, but to complete a mega-analysis instead, such that the
raw data from each of the studies are combined into one commondatabase. Some
notable examples of this approach were applied to multiple sclerosis (Cooperative”,
2001; GAMES and Cooperative”, 2003), celiac disease (Babron et al., 2003), asthma
(Iyengar et al., 2001), diabetes (Demenais et al., 2003) andobesity related pheno-
types (Heo et al., 2002). A master marker map can be established by using a marker
location database. If there are any missing values, one could consider imputation as
in Heo et al. (2002). The combined data is then analyzed usinga standard linkage
method. It has been shown (Guerra et al., 1999), that a mega-analysis may have more
power to detect linkage than a meta-analysis; however, one should consider the dif-
ferent types of heterogeneity that may be inherent in each ofthe different studies.
This heterogeneity may adversely confound or overshadow the results from a mega-
analysis and may arise from differing study designs (linkage results on extended
pedigrees may not combine well with linkage results from sib-pairs, discordant pairs
or parent-offspring triads), varying ethnic/racial groups across study populations (dif-
ferent genes acting in different populations) and varying sample sizes.

1.3.2 Scenario 2: All studies use similar linkage tests and similar marker maps

This scenario could also arise when the researcher is a member of a data consor-
tium whereby the members individually analyze their own data using a common
linkage method and freely share linkage results instead of raw data. Likewise, this
scenario could occur when the researcher personally contacts corresponding authors
from published studies and requested complete linkage analysis results from their
data. If these data are obtained from corresponding authors, or extracted from the
literature, the researcher should collect the most detailed information possible: i.e.,
score statistics instead ofp-values, marker information content, recruitment criteria
and sample schemes. For this scenario, we once again recommend that the researcher
choose a meta-analysis method that is flexible enough to account for between-study
heterogeneity: (Dempfle and Loesgen (2004) or Etzel et al. (2005) if score statistics
are available or Zintzaras and Ioannidis (2005b) if onlyp-values are provided.
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1.3.3 Scenario 3: All studies used similar linkage tests butwith different marker
maps

This scenario is similar to scenario 2 except for the commonality of the marker maps
between the studies and likewise, this scenario could occurfor the same reasons as
scenario 2. The added complexity of differing marker maps will not hinder a meta-
analysis over the individual studies, as long as the researcher uses a method that is
flexible in this respect. Once again, we advise that the researcher request as detailed
linkage information as possible and apply a meta-analysis based on the effect size
method proposed by Etzel et al. (2005) if score statistics are available or the GSMA
modification proposed by Zintzaras and Ioannidis (2005b) ifonly p-values are pro-
vided.

1.3.4 Scenario 4:p-values or LOD scores from different linkage tests and different
marker maps from published data are available from all studies

In this scenario, it is assumed that the researcher is basingthe meta-analysis on sum-
mary linkage results (p-values or LOD scores) that are available from published ar-
ticles with no follow-up information obtained from the corresponding authors. Al-
though the availability of data in this scenario may seem limited and can vary greatly
depending on the disease of interest, manuscript type and journal of publication,
many meta-analyses are based on such data (Allison and Heo (1998) for instance).
For this case, the GSMA method (Wise et al., 1999) would be thebest method to em-
ploy as long as the available data allow. If possible, the researcher could also employ
any of the modifications to the GSMA method if s/he has ample auxiliary information
to do so. In cases where application of the GSMA method is not possible (such as
the scenario posed by Allison and Heo (1998)), then application of Fisher’s method
is still viable.

1.4 Discussion

Herein, we review current meta-analytic techniques for thecombination of linkage
data across studies in order to arrive at a consensus for linkage to a complex disease.
We also propose several scenarios to help guide the researcher in their choice of
which meta-analytic technique to employ. However, we caution that meta-analysis is
more than just a method one can use to combine data together. Although the choice
of method is important, the researcher must also keep in mindthat the application
of a method is just a small part of a complete meta-analysis. Just as study design
and participant recruitment is important at the beginning of any linkage study, a re-
searcher who is about to embark on a meta-analysis should also develop a study
design and participant study plan which includes a literature review plan, as well as
study inclusion/exclusion criteria. The researcher must also gather as much infor-
mation on original studies as possible, which may include contacting corresponding
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authors. If raw data are provided, the researcher needs to decide how to treat miss-
ing data. The researcher may have ample data to complete a meta-analysis; however,
roadblocks to complete the meta-analysis may exist. Most ofthese roadblocks in-
clude differences among the studies with respect to: markermaps or denseness of
maps, family structure, environmental factors, population substructure, distinct ge-
netic etiology/different pathways within the disease of interest, marker informativity,
sample sizes, ascertainment schemes, phenotype definitions and/or linkage tests. Ad-
ditional challenges include publication bias and time-lagbias. Although we presented
meta-analytic methods that can handle some of these problems, no one single meta-
analysis method exists that can handle all such problems. Therefore, a researcher
must be willing to accept the limitations of his/her own meta-analysis.

Two topics that we have not discussed in detail within this chapter involve determin-
ing an appropriate significance level for a meta-analysis performed on genome scans
and the effect of publication bias (only positive linkage results published). The topic
of genome-wide significance levels for individual studies remains in controversy and
to fully detail the debate with respect to a meta-analysis would be a lengthy chap-
ter in itself. Instead, we leave it to the researcher to consider an appropriate signifi-
cance level, but advise the researcher to look to Morton (1955), Lander and Kruglyak
(1995), Feingold et al. (1993), Sawcer et al. (1990), Rao (1998), Rao and Gu (2001),
and Levinson et al. (2003) to gain more insights into the determination of an appro-
priate significance level.

Publication bias in a meta-analysis may become a factor whenthe results of the
study impact the probability that it will be published in theliterature. In this event,
if the published literature was biased in favor of statistically significant results, you
would find a relative lack of studies reporting negative evidence for linkage and you
could incorrectly conclude a region to be more significantlyinvolved in the disease
in question than it really is. Iyengar and Greenhouse (1988)present two procedures
to handle this potential bias by estimating what they term the ’fail safe sample size.’
They first describe the procedure presented by Rosenthal (1979) which determines
the minimum number of unpublished studies with null resultsrequired to reverse the
conclusion of the meta-analysis over the published studiesand note that Rosenthal
(1984) provides some ad hoc guidelines for interpretation.Iyengar and Greenhouse
(1988) extend the approach described by Rosenthal (1979) and present a second
procedure based on selection models that uses a maximum likelihood approach to
model the reporting process by weighting the results in the meta-analysis. They note
that by using the MLE approach, you can examine how changing your assumptions
about the selection model change the parameter estimates and inference of the meta-
analysis.
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1.6 Appendix A

Example transformation of a linkage summary to a score statistic

1. Transform an HLOD to Chi-square variate:Xst = 4.6 ∗ HLODst

2. Obtainp-value for each chi-square variate (Faraway, 1993):pst = 0.5 ∗ [1 −
P2(χ2

1 < Xst)]

3. Transform the resultingp-value to a normal variate by the inverse of the normal
distribution:Zst = Φ−1(pst)



CHAPTER 2

Meta-analysis methods for
genome-wide linkage studies

Cathryn M. Lewis
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Guy’s, King’s and St. Thomas’ School of Medicine
King’s College London, UK

2.1 Introduction

Genome-wide linkage studies have been extensively used to identify chromosomal
regions which may harbour susceptibility genes for complexdiseases. The early en-
thusiasm for such studies has been replaced by the realisation that most complex
disease genes have only a minor effect on risk, and consequently many linkage stud-
ies have low power to detect such genes (Risch and Merikangas, 1996). This was
well illustrated by a compilation of 101 genome-wide linkage studies in 31 diseases,
which found that few studies achieved significant evidence for linkage, and there was
little replication within each disease (Altmuller et al., 2001). Replication of linkage
is an important concept in genome-wide linkage studies: twostudies obtaining high
(if not significant) LOD scores in the same approximate region lends further weight
to these results. Thisad hocmethod of comparing results across studies is formalised
in meta-analysis, which provides statistical evidence forthe co-localisation of link-
age evidence across studies. Meta-analysis can also provide a solution to the lack
of power in individual studies: combining weak evidence of linkage from several
studies may show an overall significant effect.

Several methods for meta-analysis of linkage studies have been proposed. The gold
standard is a complete analysis of genotype data from all contributing studies (of-
ten termed ‘mega-analysis’). However, many study groups are reluctant to share raw
genotype data, particularly if they are restricted by industrial partnerships. There are
also technical problems of pooling different marker maps, and difficulties in finding
an analysis method that is suitable for all studies. Poolinggenotypes in short candi-
date regions has worked well in many collaborative studies (Demenais et al., 2003;
Levinson et al., 2002).

15
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2.2 Statistical methods for meta-analysis of linkage studies

The meta-analysis methods used in epidemiological studiesare difficult to apply di-
rectly to genetic linkage studies. Methods that pool effectsizes (e.g.odds ratios)
across studies are inappropriate as linkage studies frequently report results as a test
statistic orp-value. In addition, we wish to assess linkage evidence across a region,
not at a single location. Novel meta-analysis methods have therefore been developed
to take account of the unique design and analysis strategiesused in genetic studies.

For a meta-analysis ofp-values at a single point, Fisher’s method for poolingp-values
can be used, provided LOD score values of zero are treated correctly (Province,
2001). However, unless testing for linkage at a strong candidate gene, specifying
a single location for the analysis may not be optimal. Simulation studies show that
maximum LOD scores have poor localisation, and can arise up to 30cM from a sus-
ceptibility gene (Cordell, 2001). Assessing evidence across a region therefore im-
proves the power to detect linkage in a meta-analysis; this strategy is implemented
in the Multiple Scan Probability (MSP) method (Badner and Gershon, 2002b). This
method extends Fisher’sp-value method, using the minimump-values attained in a
region, with a correction to thep-value for the total region length included in the anal-
ysis (see below for further details). The meta-analysis of identity-by-descent (IBD)
sharing in affected sib pairs has been proposed for both discrete and quantitative
traits (Gu et al., 2001) (***see also chapters in this book).Performing meta-analysis
on this parameter of effect size is methodologically appealing. However, the IBD
sharing statistic is rarely reported in publications, and some methods rely on identi-
cal markers being genotyped in each study, which severely restricts their application.

2.3 Genome Search Meta-Analysis method

The Genome Search Meta-Analysis (GSMA) method (Wise et al.,1999) was devel-
oped to circumvent some common problems of performing meta-analysis on genome-
wide linkage studies. The GSMA is a non-parametric method, with few restrictions
or assumptions, so that any genome-wide linkage search can be included, regardless
of study design or statistical analysis method.

In the GSMA, the genome is divided into bins of approximatelyequal cM width. We
conventionally use 120 bins of 30cM length, so that for chromosome 1, the region
between 0 and 30cM is assigned to bin 1.1, between 30-60cM to bin 1.2,etc.. Let the
number of bins ben , and the number of studies bem. For each study, the maximum
LOD score (or minimump-value) within each bin is identified, and the bins are
ranked, with the most significant result achieving a rank ofn, the next highest result
a rank ofn− 1, etc.. Across studies, the ranks for each bin are summed; the summed
rank forms the test statistic for this bin. A high summed rankimplies that the bin has
high LOD scores within individual studies, and may contain asusceptibility locus.
Under the null hypothesis of no linkage, the summed rank for abin will be the sum
of m ranks, randomly chosen from1, 2, . . . , n with replacement. Significance levels
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for each bin can be determined from the distribution function of summed ranks (Wise
et al., 1999) or by simulation.

Under no linkage, the probability of attaining a summed rankR in a specific bin,
from m studies andn bins is:

P (

m
∑

i=1

Xi = R) =







0 for R < m
1

nm

∑d
k=0(−1)k

(

m
k

) (

R−kn−1
m−1

)

for m ≤ R ≤ mn
0 for R > m,

whereXi = rank of studyi andd = integer part of(R − m)/n (Wise et al., 1999).
Hence the probability of obtaining a summed rank ofR or greater (i.e. thep-value)
in a bin can be calculated. This bin-wisep-valuepSR can also be obtained by sim-
ulation, permuting the bin-location of the assigned ranks.For each study, the ranks
within a study are randomly re-assigned to bins, and then thesummed rank calcu-
lated for each bin. Ford replicates,dn summed rank values are obtained, and the
p-value for the observed summed rank is calculated from the number of simulated
bins with summed rank greater than the observed summed rank(= r). Thep-value
is thenpSR = (r + 1)/(dn + 1), wheren is the number of simulated bins (North
et al., 2003). Calculating critical values from simulations is particularly appropriate
where the assigned ranks depart from the integer values1, 2, . . . , n assumed in the
distribution function above, through tied ranks or missingvalues (see Table 2.1).

The GSMA was developed to encompass diverse study designs and analysis meth-
ods. The linkage evidence may be extracted from any analysismethod: for exam-
ple, multipoint LOD scores calculated at each 1 cM, LOD scores calculated at each
marker genotyped with the bin, or parametric LOD scores calculated at a series of
recombination fractions for each marker. For parametric LOD scores, linkage is of-
ten tested using a series of models with different modes of inheritance or different
penetrance/frequency parameters. The evidence for linkage can be assessed across
all models analysed, provided the underlying distributionof LOD scores is approx-
imately equal in each model; this can be determined from the distribution of LOD
scores across the genome. Thus, the maximum evidence for linkage within a bin
would be the highest LOD score calculated, regardless of themodel under which it
was obtained.

The bin-wise summed rankp-valuepSR assesses the information in each bin and
independently of other bins, and should therefore be corrected for multiple testing.
With 120 bins, under no linkage, 6 bins would be expected to attainpSR < 0.05, and
1.2 bins to attainpSR < 0.01. Following Lander and Kruglyak (1995), we define
genome-wide evidence for linkage as that expected to occur by chance once in 20
GSMA studies, and suggestive evidence for linkage as that expected to occur once in
a single GSMA study (Levinson et al., 2003). Using a Bonferroni correction on 120
bins givesp = 0.00042 (= 0.05/120) for genome-wide significance, andp = 0.0083
(= 1/120) for suggestive evidence of linkage.

For a genome-wide assessment of linkage, the ordered rank (OR) p-value (pOR)
may be used (Levinson et al., 2003). This uses simulations ofthe complete GSMA
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Table 2.1: Common sources of incomplete data in the GSMA, andpossible solutions

Missing data problem Possible solutions

Many bins with a maximum Use tied ranks, so 20 bins with a maximum LOD score of zero
LOD score of zero would be assigned ranks 10.5.

Bins with no genotyped markers Assign the median rank (i.e. (n + 1)/2 for n bins), or assign
or no linkage data a rank which is the weighted average of flanking bins

(since multipoint LOD scores are correlated in adjacent bins).

Results are only reported from Contact study authors for full information, and carry out the study
regions with the strongest collaboratively. Alternatively, if the observed results fall intob bins,
evidence for linkage assign these ranksn, n − 1, n − 2, . . . , n − (b + 1), and assign all

remaining bins the average remaining rank. For many missingbins,
or bins missing in several studies, this method is not advisable,
as the distribution function no longer provides a good fit.

Different chromosomes have been Analyse all relevant subsets of studies to obtain maximum information,
included (e.g.some studies and for each bin/region, report results from the analysis with most
have not tested the X chromosome) complete data. If chromosome X is missing forr studies

(out ofm), analyse the remainingm − r studies for the whole genome,
and report these results from this analysis for chromosome X.
Autosomes can then be analysed will all studies.

Two-stage genome wide study, Use only the first stage analyses: the distribution of the maximum
with some regions genotyped LOD score per bin depends on the number of families included, and a
on additional families consistent study design should be used across the genome.

High-density genotyping in Obtain original LOD scores frommarkers used in the genome search.
previously identified candidate The maximum evidence for linkage within a bin increases
regions with denser genotyping, thus inflating the evidencefor linkage

in more densely-genotyped bins.
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to compare the summed rank of the observedkth highest bin with the simulated
distribution of summed ranks of thekth highest bin,i.e. compares the ‘place’ of the
bins in the full listing of results. So, in a simulation of 5000 complete GSMAs, the
bin with the highest summed rank is compared to all 5000 bins with highest summed
rank, and the ordered rankp-valuepOR calculated. Similarly, the summed rank of
the bin in thekth place is compared to summed ranks of all bins lying inkth place.
This test can identify evidence for many bins with increasedevidence for linkage,
although the evidence for linkage within each bin may be modest. In the study of
20 genome wide searches for schizophrenia, 12 bins in the weighted analysis had
significant summed rank and significant ordered ranks (pSR < 0.05, pOR < 0.05).
Our simulations based on these studies showed that this combination of significant
results was not consistent with occurring by chance (not observed in 1000 GSMA
simulations of an unlinked study). The combination of a significant pSR and pOR

is therefore highly predictive of a linkage within a bin, however empiric criteria for
linkage for an arbitrary number of studies have not yet been developed (Levinson
et al., 2003).

In assessing linkage we recommend the following hierarchy for interpreting results:

1. A genome-wide significant summed rankp-value (pSR < 0.05/#bins)

2. Nominal evidence for linkage in both statistics (pSR < 0.05, pOR < 0.05)

3. Nominal evidence for linkage in the summed rank (pSR < 0.05)

No evidence for linkage should be declared where bins do not have a significant
summed rankp-value. Within bins with a significant summed rank, a significant or-
dered rankp-value can be considered to enhance the evidence for linkage. Clearly, if
thekth bin has nominal evidence for linkage under both statistics,then any bin with
higher summed rank must also be considered significant. By plotting the observed
summed ranks by size, with the distribution of ordered ranks, a ‘scree slope’ may be
seen where the summed ranks decrease rapidly and the orderedranks become non-
significant (see Figure 2, in the inflammatory bowel disease GSMA (van Heel et al.,
2004)). In regions where thepSR > 0.05 but pOR < 0.05, one interpretation is that
the power to identify linkage in these bins is low, and a larger meta-analysis might
increase significance ofpSR, whilst retaining the significance of the ordered rank
statistic.

2.4 Collaborative or published information?

Two main approaches are used to carry out a GSMA analysis. Firstly, the GSMA
may be based on published information, for example extracting linkage statistics
(NPL/MLS scores,p-values,etc.) from graphs and tables. In some cases, investiga-
tors may have posted detailed genome-wide results or original genotype data on a
website. In papers, genome-wide studies are frequently displayed as line graphs of
linkage statistics along each chromosome. This may be used in the GSMA by di-
viding each chromosome into the required number of equal length bins, and reading



20 GENOME-WIDE LINKAGE STUDIES

off the maximum statistic attained in each bin. Inaccuracies in the method arise from
different marker maps used in each study, or different chromosome lengths (so that
bins will not be exactly compatible across studies). If marker names are given, bins
may be designated more accurately by mapping the bin boundary markers relative to
the genotyped markers. In some studies, tables of linkage statistics attained at each
marker genotyped are given. These markers may be placed intorelevant bins, and the
maximum linkage statistic for each bin identified. Common problems arising from
the use of published data are listed in Table 2.1, with possible solutions.

A more satisfactory method of performing a meta-analysis study is to form a collabo-
ration of relevant research groups, and use computer files ofLOD scores (e.g.output
files generated from Genehunter, Allegro,etc.). This gives full information on the
location and magnitude of linkage statistic, and should improve the accuracy of the
resulting study. However, if some researchers do not wish toparticipate, the organis-
ers must then choose between an incomplete meta-analysis ofhigh quality data and
a complete meta-analysis of lower quality data. In practice, meta-analyses of genetic
studies have been widely supported by researchers (e.g.schizophrenia (Lewis et al.,
2003), bipolar disorder (Segurado et al., 2003), and inflammatory bowel disease (van
Heel et al., 2004)).

In any meta-analysis, the investigators rely on the high quality of results generated
by the original studies. Any errors due to genotyping problems, inaccurate phenotype
definition, incorrect pedigree reconstruction, or poor analysis methods will be carried
through to the meta-analysis, and will reduce power to detect evidence for linkage.
Errors seem likely to be random in each study, and should therefore not introduce a
bias to the meta-analysis results.

2.5 Summed ranks or average ranks?

The GSMA was originally formulated using summed ranks, where the highest rank
n is assigned to the bin with the strongest evidence for linkage. This follows the
statistical convention that high test statistics (i.e.summed rank) show more evidence
against the null hypothesis. An alternative, more intuitive, approach is to assign rank
1 to the ‘best’, most significant bin, and then use the averagerank as a test statistic
so that low average ranks give stronger evidence for linkage(Levinson et al., 2003).
Statistically these approaches are equivalent, and a summed rank ofR from n bins
andm studies can be converted to an average rank as(n + 1) − R/m.

2.6 Bin width

The GSMA is heavily dependent on the chosen bin width. Our original description
of the GSMA listed 120 bins, defined by specific boundary markers (see table at
http://www.kcl.ac.uk/depsta/memoge/gsma/ for full marker-bin in-
formation). The exact bin width depends on both chromosome length (to give equal
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width bins on each chromosome) and marker location. Other studies have chosen
different bin widths (see Table 2.2). Although narrow bins may intuitively provide
more information (see Figure 2.1), localisation through linkage information is broad.
Adjacent bins may show evidence for linkage (see, for example, rheumatoid arthritis
(Fisher et al., 2003) and inflammatory bowel disease (van Heel et al., 2004) GSMA
studies) and simulation studies have shown that the strongest information for linkage
may arise in the bin flanking the true location (Levinson et al., 2003). In a study of
age-related macular degeneration (Fisher et al., 2005), the original 120 bins (of 30cM
length) were then bisected, and ranks (for 240 bins) re-assigned to determine whether
more bins would improve localisation information or identify novel loci. The results
were disappointing, with similar evidence for linkage spreading across several 15cM-
width bins, and no novel regions were identified. The relative advantages of narrow
or wider bins are listed in Table 2.3.

2.7 Weighted analysis

The original formulation of the GSMA assumed that all studies contributed equally.

However, a study of 500 affected sibling pairs (ASPs) has higher power to detect a
true locus than a study of 100 ASPs. This aspect can be reflected in the meta-analysis
by weighting the studies by sample size. The function sqrt(#genotyped affected in-
dividuals) has been used in many studies (see Table 2.2) and increased the power
to detect linkage by approximately 7% compared to unweighted analyses in a simu-
lation study based broadly on studies in the schizophrenia GSMA (Levinson et al.,
2003). The optimal weighting function is unclear, particularly when some studies
have used extended pedigrees and others have used ASPs. The power to detect link-
age will depend on the locus effects (mutation frequency, penetrance), and for some
loci, extended pedigrees may have higher power to detect linkage while affected sib
pairs may be the optimal sampling unit for other genes. Defining a single weighting
parameter is therefore somewhat unsatisfactory.

The chosen weighting function can be standardised by its average value for all stud-
ies, so that the mean weight is 1. Using a narrow range of weights (e.g.0.9 – 1.1)
will give an analysis that is very close to the unweighted analysis. However, using
one study with a very high weight (e.g.four studies with weights 3.0, 0.4, 0.3, 0.3)
will give results close to those obtained in this single study. Both these situations
should be avoided, and alternative weighting functions mayneed to be tested.

2.8 GSMA software

Software to perform GSMA on genome-wide linkage studies is available fromhttp://www.kcl.ac.uk/depsta/memoge/g
(Pardi et al., 2005). This program is written in C++ and available on Windows, Mac,
and Unix/Linux platforms. The data input is a table of maximum linkage statistics
for each bin, for each study. The program allows for an arbitrary number of bins
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Table 2.2: Summary of published GSMA studies (geno: genotyped individuals;aff : affecteds;arp: affected relative pairs;asp: affected
sib pairs; Significance – Nom: nominal; Sugg: suggestive; Gen: genome-wide)

# bins withSR pSR < 0.05,

Disease Publication # studies # families # bins Weights Nom./Sugg./Gen. pOR < 0.05

Multiple sclerosis Wise, 1999 4 257 120 – 8/2/1 –
Type 2 diabetes *Demanais, 2003 4 1127 120 – 6/1/0 –
Schizophrenia *Lewis, 2003 20 1208 120

p

(#aff) 12/4/1 12
Bipolar disordera *Segurado, 2003 18 370 120

p

(#aff) 9/2/0 2
Coeliac disease *Babron, 2003 4 442b 115 #ped 5/5/2 –
Rheumatoid arthritis Fisher, 2003 4 570 120 #asp 10/3/1 –
Coronary heart disease Chiodini, 2003 4 807 124

p

(#asp) 4/3/1 –
Inflammatory bowel disease Williams, 2003 5 709 117 – 8/4/1 –
Crohn’s disease Williams, 2003 5 472 117 – 9/4/0 –
Inflammatory bowel disease *van Heel, 2004 10 1253 105

p

(#arp) 8/5/1 6
Crohn’s disease *van Heel, 2004 10 711 105

p

(#arp) 10/5/0 8
Ulcerative colitis *van Heel, 2004 7 314 195

p

(#arp) 5/1/0 0
Hypertension/blood pressure *Koivukoski, 2004 9 1992 120

p

(#aff) 9/3/1 2
Psoriasis †Sagoo, 2004 6 493 110 – 5/2/2 –
Cleft Lip/Palate †Marazita, 2004 13 574 120

p

(#geno) 12/3/1 12c

Body mass index *Johnson, 2005 5 505 121
p

(#geno) –/1/0 –
Age-related macular degeneration *Fisher, 2005 6 908 120

p

(#aff) 15/2/1 11

* = collaborative study;† = partially collaborative;avery narrow phenotype definition;bbased on fine-scale mapping;
cmaximum number, including candidate region follow-up
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Table 2.3: Comparison of properties affecting choice of binwidth

Property Narrower bins Wider bins
(e.g.120 x 30cM bins) (e.g.60 x 60cM bins)

Bin width Little variability Unequal bin widths for
different length chromosomes

Correlation in ranks Highly correlated, particularly Low correlation
in adjacent bins for multipoint linkage analysis.

May violate distributional
assumptions for test statistic.

Localisation Reasonable, although adjacent Poor
bins may be significant

Power to detect High, except where Lower, except where wider
linkage maximum LOD scores occur in bins substantially increases the

different bins study rank in linked regions

Consistency of bin Poor, especially based on More overlap between bins in
definition across published information adjacent studies,even when
studies poorly defined

and studies. Missing values are permitted, and bins replaced with the median link-
age statistic for that study. For studies reportingp-values, the entry values should be
1− p-value to ensure correct ranking of results. The program calculates the summed
rank, then determines the summed rank and ordered rankp-values (pSR, pOR) by
simulation. The user may determine the number of simulations, and the program is
rapid, completing 10,000 simulations in under 3 seconds on adesktop PC. Weighted
and unweighted analysis is performed, using user-defined weights. Three results files
are output: (a) results for the most significant bins only, (b) a full genome listing of
bin, summed rank,pSR, pOR (weighted and unweighted analyses), and (c) ranks
assigned to each study, for data checking.

2.9 Power to detect linkage using the GSMA

An extensive simulation study of the GSMA was carried out by Levinson et al. (2003)
based on genome scans contributed to the meta-analyses of schizophrenia (Lewis
et al., 2003) and bipolar disorder (Segurado et al., 2003). For the simulation, a num-
ber of sib pairs with broadly equivalent information to the pedigrees from the original
studies were used, with 1625 ASPs for schizophenia, 1017 ASPs for bipolar disor-
der (narrow phenotype definition), and 501 ASPs for bipolar disorder (very narrow
phenotype definition). These three studies therefore give awide range of study sizes
covering those seen in many GSMA studies (Table 2.2).

The schizophrenia study had high power to detect linkage with a locus conferring a
sibling relative risk (λs) of 1.3 at a significance level ofp < 0.01. For a significance
level of 0.05, a power of at least 70% was attained in the following situations:

• 1625 ASPs (schizophrenia), for a locus withλs = 1.15,
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• 1017 ASPs (bipolar disorder, narrow phenotype) for a locus with λs = 1.3,

• 501 ASPs (bipolar disorder, very narrow phenotype) for a locus withλs = 1.4.

Full details of other assumptions required in the simulation, including the number
of genotyped parents, marker density, and number of loci simulated are given in the
original paper (Levinson et al., 2003).

The power of a study to detect linkage depends on the number ofstudiesm and the
number of binsn, in addition to the genetic effect size in each study. The average
rank threshold for declaring genome-wide, suggestive or nominal linkage changes
with the number of studies(m = 4, 7, 10, 15, 20) and the number of bins(n =
60, 120), as shown in Figure 2.1. Note that the thresholds for genome-wide (pGW )
and suggestive(pSUG) linkage depend on the number of bins used: pGW = 0.00042
andpSUG = 0.0083 for 120 bins, andpGW = 0.00056 andpSUG = 0.017 for 60 bins;
nominal evidence for linkage was fixed atp = 0.05 throughout. With 120 bins, an
average rank threshold for nominal linkage is 32 for 4 studies, but over 48 for 20
studies – so the average rank is not even within the top third of reported ranks. An
average rank of 32 gives nominal evidence for linkage with 4 studies, but provides
genome-wide evidence for linkage with 20 studies. With 60 bins, lower average ranks
are required for linkage, so that the evidence must be stronger in linked bins where
wider bins are used. Provided the maximum LOD scores for a locus localise to a
narrow region, using narrow bins provides the most evidencefor linkage: with 10
studies, an average rank of 20 gives genome-wide evidence for linkage if this is
obtained using 120 bins, but only nominal significance with 60 bins. Reducing the
number of bins could, however, increase the power to detect linkage if the LOD
scores’ peaks are too widely spread to be contained in a single bin (for example if
the locus lies close to a bin boundary), so that the average ranks decrease using fewer
bins.

One critical issue is the loss of information arising when the GSMA divides the
genome into discrete bins. Two simulation studies have compared the power of the
GSMA to the power of ‘mega-analysis’, based on genotype datafrom each study.
Dempfle and Loesgen (2004) showed that the power of the GSMA was less than the
mega-analysis approaches tested, but they applied the Lander and Kruglyak criteria
for genome-wide significance, which is much more stringent than using a Bonfer-
roni multiple testing correction (0.05/#bins). Using thisappropriate, less stringent,
correction, Levinson et al. (2003) showed that the power of the GSMA to detect
linkage was actually higher than for the analysis of pooled genotypes.

2.10 Extensions of the GSMA

Many different diseases have been studied using the GSMA, but little further method-
ological development has been carried out. Some authors have proposed minor en-
hancements to the method. For example in their study of celiac disease, Babron et al.
(2003) used a summed rank function that was a weighted average of the ranks of a bin
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Figure 2.1: Critical values of the average rank required forgenome-wide, suggestive,
and nominal evidence for linkage, by number of bins.

and two flanking bins. This extends the potential area in which evidence for linkage
can be shown, since high linkage statistics in a flanking bin will be included. How-
ever, it will also increase the correlation between summed ranks in adjacent bins. An
alternative approach to the problem of maximum LOD scores being attained in ad-
jacent bins in different studies is ‘pooled bins’ used in therheumatoid arthritis study
(Fisher et al., 2003). Here, adjacent bins are pooled, and the original analysis ofn
bins is reanalysed as two analyses ofn/2 bins each, where bins 1+2, 3+4, . . . are
pooled in the first analysis, and 2+3, 4+5 . . . are pooled in thesecond analysis. This
analysis would be valuable where a true locus lies close to a bin boundary, and the
bin-location of maximum linkage evidence is inconsistent across studies. However,
as Figure 2.1 shows, reducing the total number of bins reduces the power to detect
linkage.
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In their study of cleft lip/palate, Marazita et al. (2004) use a series of overlapping
bins from 0-30cM, then 10-40cM, 20-50cM,etc.and assess the maximum evidence
for linkage across each possible bin. This should give better localisation information,
and may determine whether two linkage peaks exist in one region. However, there
are unresolved problems of multiple testing.

Recently, Zintzaras and Ioannidis (2005b) provided a majorextension to the GSMA
in developing methods to test for heterogeneity of linkage evidence within a bin. Het-
erogeneity testing is a standard component of meta-analysis in epidemiological stud-
ies, where researchers test for evidence of different effect sizes across studies, but has
not previously been implemented in the GSMA. They apply these methods directly
to the rank statistics of each study, introducing three highly correlated heterogene-
ity statistics. The significance of each statistic is assessed by simulation, randomly
reassigning the ranks to bins within each study, and recalculating each heterogene-
ity statistic. The proportion of simulated bins withQ-statistics above the observed
value (for high heterogeneity), or below the observed value(for low heterogeneity)
is then tabulated for ap-value. Zintzaras and Ioannidis (2005b) applied the meth-
ods to published ranks in GSMA studies of rheumatoid arthritis (Fisher et al., 2003)
and schizophrenia (Lewis et al., 2003). They identify several bins in each study that
show evidence for high heterogeneity (different evidence for linkage across studies)
or low heterogeneity (consistent linkage evidence). The authors acknowledge that the
distribution of the heterogeneity statistics may depend onthe summed rank statistic
attained within the bin. They therefore test for heterogeneity under two scenarios:
where the observed heterogeneity statistic is compared to all simulated bins, and
where the observed heterogeneity statistic is only compared to simulated bins with
similar summed rank values (±2).

2.11 Limitations of the GSMA

Three classic sources of error in meta-analysis studies arelisted below and discussed
with their relevance to the GSMA.

2.11.1 File drawer problem

This error arises when unpublished studies are not includedin the meta-analysis,
as their existence is unknown to the investigators. For linkage studies of candidate
regions, a publication bias exists as negative studies are less likely to be published,
which will bias the results of the meta-analysis. For genome-wide studies this is
not a major concern: these studies are large, expensive to perform, and publishable,
regardless of the significance of LOD scores obtained. No single hypothesis is being
tested, so publication bias is not relevant.
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2.11.2 Garbage in, garbage out

Any meta-analysis is reliant on the quality of both the data and the results from the
individual studies. We assume that each study has a high quality of phenotype and
genotype data, and that standard quality control checks have been performed (e.g.
testing for non-paternity, genotyping errors). The most challenging problem in the
GSMA is ensuring a consistent bin definition, particularly where studies have used
marker maps that differ in order or distance.

2.11.3 Apples and Oranges

Pooling data from many different studies is statistically appealing, but it is only of
value if a common effect is occurring across the studies. There are several sources of
heterogeneity that can limit the value of a meta-analysis ofgenetic linkage studies.
Potential sources of heterogeneity are population, familysampling units (extended
pedigrees or affected sibling pairs), and clinical characteristics (diagnostic criteria,
age of diagnosis, severity of disease). Heterogeneity for evidence of linkage can be
tested using the methods of Zintzaras and Ioannidis (2005b). A subset analysis can
also be performed to analyse a more homogeneous set of studies. We have little un-
derstanding of how the distribution of genetic variants contributing to complex dis-
ease may be affected by these features, although the common disease, common vari-
ant (CDCV) hypothesis for complex diseases implies that a variant would be present
across a wide range of study designs. Some GSMA studies have detected linkage to
several genetic regions (schizophrenia, inflammatory bowel disease), suggesting that
at least some common disease genes can be detected across diverse studies.

2.12 Disease studies using the GSMA

The GSMA has been applied in 14 studies of complex diseases, summarised in Ta-
ble 2.2 (Demenais et al., 2003; Wise et al., 1999; van Heel et al., 2004; Lewis et al.,
2003; Segurado et al., 2003; Fisher et al., 2003, 2005; Babron et al., 2003; Marazita
et al., 2004; Chiodini and Lewis, 2003; Williams et al., 2002; Koivukoski et al.,
2004; Sagoo et al., 2004; Johnson et al., 2005). Most studieshave analysed qualita-
tive diseases, but quantitative traits (hypertension, body mass index) have also been
studied. The average number of linkage studies included was7.9 (range 4-20), and
the average number of families was 736 (range 257-1992). (These figures omit the
overlapping studies of inflammatory bowel disease, Crohn’sdisease and ulcerative
colitis). Of 14 studies, 8 were full collaborations, while others relied at least partially
on published information. All studies found at least one suggestive result (approxi-
matelyp < 0.01), and in 12 studies, at least one result of genome-wide significance
was found. In the auto-immune diseases, genome-wide significance was found in the
HLA region on chromosome 6 (multiple sclerosis (Wise et al.,1999), rheumatoid
arthritis (Fisher et al., 2003), psoriasis (Sagoo et al., 2004), inflammatory bowel dis-
ease (van Heel et al., 2004)), confirming findings of the original linkage studies. In



28 GENOME-WIDE LINKAGE STUDIES

other studies, a region of genome-wide significance was observed on chromosome
2 for schizophrenia (Lewis et al., 2003), which had not previously been highlighted
as a strong candidate region for schizophrenia (O’Donovan et al., 2003). Similarly,
regions of genome-wide significance were detected on chromosome 4 for psoria-
sis (Sagoo et al., 2004), on chromosome 3 for coronary heart disease (Chiodini and
Lewis, 2003), on chromosome 2 for cleft lip/palate (Marazita et al., 2004), on chro-
mosome 3 for hypertension (Koivukoski et al., 2004) and on chromosome 10 for
age-related macular degeneration (Fisher et al., 2005). Nosusceptibility genes have
yet been localised in these regions for these diseases, but they provide strong candi-
date regions for follow-up linkage or association studies.Genome-wide significance
is an extremely stringent criteria (occurring only once in 20 GSMAs by chance), and
this is illustrated by the results for Crohn’s disease in theregion of CARD15 on chro-
mosome 16. This region attained ap-value of 0.003 (weighted analysis) (van Heel
et al., 2004), despite the presence of this confirmed susceptibility gene. Across the
diseases, there was no correlation between the number of bins with nominal or sug-
gestive significance and the number of studies included. Only five studies had used
the Ordered Ranks test to assess clustering of linkage results, but the easy availability
of this method in the GSMA software package (Pardi et al., 2005) should make this
analysis more widely used.

These results show that the GSMA can play an important role insynthesizing data
across genome-wide linkage studies and directing follow-up studies. The number of
significant regions arising from GSMA studies has raised enthusiasm for the potential
utility of linkage studies, these studies suggest that susceptibility genes for complex
diseases are detectable using linkage studies, provided the sample sizes are large
enough.

2.13 The Multiple Scan Probability method (MSP)

Badner and Gershon (2002b) developed a novel method of meta-analysis of linkage
data, based on the maximum evidence for linkage obtained within a genetic region.
This method is ‘region-wide’ rather than genome-wide, as the region for analysis
can be specific by investigators, and is usually triggered byone lowp-value within a
study (e.g.p < 0.01). For each study, the strongest evidence for linkage within30cM
of the triggering-locus is noted, and thep-values combined, accounting for the length
of the region of the final analysis and the genotyping densityof original studies (see
Badner and Gershon (2002b) for full details). A replicationanalysis excluding the
original linkage finding is also recommended.

This method has been applied to autism (Badner and Gershon, 2002b), schizophre-
nia and bipolar disorder (Badner and Gershon, 2002a). In schizophrenia, significant
evidence for linkage was detected on chromosome 8p, 13q and 22q. These regions
on chromosome 8p and 22q were also detected in the GSMA study of schizophrenia
(Lewis et al., 2003), but the 13q region was absent. Linkage to 13q and 22q were also
found in bipolar disorder, neither of which was detected in the GSMA study (Segu-
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rado et al., 2003), however for both schizophrenia and bipolar disorder, the studies
included in the GSMA and the MSP differed substantially.

The major contrast between the GSMA and the MSP methods is in the test statistic.
The MSP uses ap-value, and therefore retains the magnitude of the significance of
the original study. In contrast, the GSMA is a non-parametric rank method, and the
maximum contribution from any study is the maximum number ofbins (i.e. rank 120
in a study of 120 bins). The MSP should therefore have higher power to detect regions
which have strong evidence for linkage in some studies, but with genetic heterogene-
ity present. Interestingly, the analysis of heterogeneityin the schizophrenia GSMA
showed significant genetic heterogeneity on chromosome 13q, which may contribute
to the different GSMA and MSP meta-analysis results in this region (Zintzaras and
Ioannidis, 2005b). The MSP would have lower power to detect regions where link-
age evidence is moderate in all studies, as this would not trigger the investigation of
a region.

2.14 Conclusions

Millions of dollars have been spent on linkage studies of complex genetic disor-
ders, but the results have been overwhelmingly disappointing. In hindsight, many of
these studies are under-powered to detect linkage to genes that confer only a modest
increase in risk for a complex disease. However, the utilityof linkage studies has
been demonstrated by the localisation of a few genes (e.g.CARD15 in inflamma-
tory bowel disease, NRG1 in schizophrenia, CAPN10 in type 2 diabetes) following
fine-mapping of regions detected in linkage analysis. Linkage studies still have an
important role in localising disease genes: genotyping of many large cohorts is in
progress, and linkage studies are still widely published. Meta-analysis of linkage
studies is therefore a timely approach. It provides a rapid and cost-effective method
to ensure that maximum information is extracted from the many linkage studies al-
ready performed. The regions highlighted in meta-analysisof linkage can be used
to prioritise future gene localisation studies, whether these are based on fine-scale
linkage, on association studies of candidate genes, or on follow-up of whole genome
association studies.
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3.1 Introduction

Many published microarray studies have small to moderate sample sizes, and thus
have low statistical power to detect significant relationships between gene expression
levels and outcomes of interest. By pooling data across multiple studies, however,
we can gain power, enabling us to detect new relationships. This type of pooling is
complicated by the fact that gene expression measurements from different microarray
platforms are not directly comparable.

In this chapter, we discuss two methods for combining information across differ-
ent versions of Affymetrix oligonucleotide arrays. Each involves a new approach for
combining probes on the array into probesets. The first approach involves identifying
“matching probes” present on both chips, and then assembling them into new probe-
sets based on UniGene clusters. We demonstrate that this method yields comparable
expression level quantifications across chips without sacrificing much precision or
significantly altering the relative ordering of the samples. We applied this method to
combine information across two lung cancer studies performed using the HuGeneFL
and U95Av2 chips, revealing some genes related to patient survival. It appears that
the gain in statistical power from the pooling was key to identifying many of these
genes, since most were not found by equivalent analyses performed separately on the
two data sets. We have found that this approach is not feasible for combining infor-
mation across the U95Av2 and U133A chips, which share fewer probes in common.
Our second method defines probesets as sets of probes matching the same full-length
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mRNA transcripts in current genomic databases. We found this method yielded com-
parable expression levels across U95Av2 and U133A chip types, and had better cor-
relation across chip types than Affymetrix’s matching probeset definitions.

3.2 Combining Microarray Data across Studies and Platforms

In recent years, microarrays have been used extensively in biomedical research. This
is evident from the fact that there are over 9000 articles published since 2000 that in-
volve microarrays, with over 3000 published in 2004 alone (http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?db=PubMed). Generally, these studies involve the identifica-
tion of individual genes or sets of genes whose expression profiles are related to
clinical or biological factors of interest, including tissue type, disease status, disease
subtype, patient prognosis, and biological pathway, to list a few. While microarrays
measure the expression levels for thousands of genes, because of cost limitations,
most studies are performed using only a small number of samples. As a result, in-
dividual studies often have limited power for detecting relevant biological relation-
ships.

More recently, there has been a movement within the scientific community to make
data from microarray studies publicly available. This movement has been propelled
by the establishment of standards for minimal information to provide when posting
data (MIAME, (Brazma et al., 2001)) and the requirement of many major journals
to make such data publicly available. There are currently a number of public reposito-
ries in which microarray data are posted, including ArrayExpress (http://www.ebi.ac.uk/arrayexpress/)
and Gene Expression Omnibus (GEO; http:// www.ncbi.nlm.nih.gov/geo/). This ex-
plosion of publicly-available data makes it possible to consider meta-analyses that
combine information across multiple studies, which allow one to assess the reliabil-
ity of results reported in the individual studies and also touncover new biological
insights not discovered in any individual study. If done properly, this pooling of in-
formation across studies can provide increased power to detect small consistent rela-
tionships that may have gone undetected in the individual analyses, and can provide
results that are more likely to prove reproducible.

There is a small but growing number of studies in existing literature that attempt to
combine information across multiple data sets. Generally,there are three approaches
that are used: 1. Identify an intersection of genes that are significant across multiple
studies, 2. Validate results from a single individual studyusing data from other stud-
ies, or 3. Perform a single analysis after combining data across multiple studies. We
now briefly discuss the merits and drawbacks of each approach.

The idea behind the first approach is that if a gene is truly differentially expressed,
then this differential expression should be manifest across multiple data sets. How-
ever, this Venn diagram-based approach often reveals a shockingly small number of
genes that are found to be differentially expressed in multiple data sets. In a study
comparing normal and CLL B-cells, Wang et al. (2004) found that only 9 genes were
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found to be differentially expressed in all three studies conducted on three differ-
ent microarray platforms, out of 1172 that were differentially expressed in at least
one study. Similarly, in a study involving pancreatic cells, Tan et al. (2003) found
only 4 genes differentially expressed across 3 different platforms, among the 185
deemed differentially expressed on at least one platform. While perhaps identify-
ing the most reliably differentially expressed genes, thisapproach actually results
in reduced sensitivity for detecting biological relationships, since each (perhaps un-
derpowered) study must find the gene significant before it is declared so. Other less
conservative approaches focused on identifying genes thatare consistent across stud-
ies include methods discussed in Rhodes et al. (2002) and Rhodes et al. (2004), which
involve combiningp-values across studies, and the integrative correlation method of
Parmigiani et al. (2004), which involves computing gene-gene pairwise correlations
on the expression levels and/or tests statistics for each individual study, then com-
puting a “correlation of correlations” across studies. This approach results in a list of
reproducible genes whose absolute or relative expression levels are correlated across
studies and platforms. It does not, however, provide additional power for detecting
biological relationships.

A number of studies take the second approach, identifying biological relationships
using the data from a single study, then using data from otherstudies for valida-
tion of these relationships (Beer et al., 2002; Sørlie et al., 2003; Stec et al., 2005;
Wright et al., 2003). Since the studies may differ with respect to their patient popu-
lations, microarray platforms, and sample handling and processing, results surviving
this stringent form of validation are likely to be real. However, like the first approach,
this use of multiple data sets does not yield any additional power for detecting bio-
logical relationships since only a single data set is used inthe discovery process.

In the third approach, the data is actually combined across studies and a single anal-
ysis is performed on the pooled data set. This is our primary interest in this chapter.
The clear advantage of this approach is the possibility of increased power for detect-
ing biological relationships, since the pooled data set is significantly larger than any
of the individual data sets. The difficulty is that there are important differences be-
tween the studies that must be taken into account before it ispossible to successfully
pool the data. The studies may differ with respect to their patient populations, sam-
ple handling, or sample preparations. These differences can be manifest in both the
clinical outcomes and the microarray data, and may affect the genes in a differential
manner. It has been shown that it is possible to obtain comparable microarray data
from different laboratories on a common platform if rigorous experimental protocols
are established and followed across the different sites (Dobbin et al., 2005). However,
posted data from different studies were likely generated using different protocols, so
these factors come into play in the meta-analysis context. These problems are further
exacerbated if the studies are conducted on different microarray platforms, which
have technical differences that make their gene expressionlevels fundamentally in-
comparable (Kuo et al., 2002; Tan et al., 2003; Mah et al., 2004; Marshall, 2004;
Mecham et al., 2004a).

Some of this heterogeneity can be handled by modeling study effects for each gene
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using fixed or random effects in the context of mixed models orBayesian hierar-
chical models, standard approaches used in meta-analysis (Normand, 1999; Ghosh,
2004; Wang et al., 2004). These approaches appropriately account for the study-
to-study variability when performing inference in the meta-analysis, and provide a
simple first-order correction for each gene that aligns the mean expression levels for
the different studies. Other approaches involve first-order corrections, but use meth-
ods that are more sophisticated mathematically. One is based on the singular value
decomposition (Alter et al., 2000; Nielsen et al., 2002), and normalizes the raw ex-
pression levels within studies using the first eigenvectorsfor the genes and arrays.
This approach assumes that these eigenvectors represent the study-to-study variabil-
ity, which is assumed to dominate all other factors. Anotherapproach (Benito et al.,
2004) normalizes using a new method called “distance weighted discrimination”
(DWD), which performs supervised discrimination to identify linear combinations
of genes associated with the study effect, which is subsequently removed. However,
these approaches, when applied to the raw expression levels, do not appear to be suf-
ficient to make data comparable across different platforms.For one, they only adjust
the mean of the distributions for the two studies, but do not adjust for higher order
distributional properties like the variances or quantiles. In a study comparing data
from spotted cDNA glass arrays and Affymetrix oligonucleotide arrays, Kuo et al.
(2002) concluded that “data from spotted cDNA microarrays could not be directly
combined with data from synthesized oligonucleotide arrays,” and further, that it is
unlikely that the data could be normalized using a common standardizing index.

For this reason, many studies do not attempt to combine the raw expression profiles
across platforms, but instead only combine unitless summary measures derived from
the raw data. The assumption is that, while the raw expression levels for the different
studies may not be comparable, these unitless statistics should be, since they are at
least on a common scale. For example, Wang et al. (2004) and Choi et al. (2003) first
compute the standardized log fold changes between two experimental conditions,
then combine these across studies using hierarchical models. Similarly, Ghosh et al.
(2003) and Tan et al. (2003) first computet-statistics comparing two experimental
conditions, then combine theset-statistics across studies. Shen et al. (2004) combine
the posterior probabilities of being over-expressed, under-expressed, or similarly ex-
pressed between two experimental conditions across data sets. These approaches are
promising and all result in increased power to detect biological relationships in the
data, and can in principle be used across different platforms. However, we believe it
would be inherently better to work with the raw expression levels, if we could get
them to be comparable. In that case, we would not be limited todichotomous compar-
isons, but could relate gene expression levels with any typeof outcome (e.g.survival
or time to progression). Also, these summary measures make implicit assumptions
about the comparability of the reference populations in thedifferent studies that, if
not true, may adversely affect inference. For example, using t-statistics assumes that
the mean and standard deviation of the true gene expression levels should be the same
across studies, and are only different because of technicalreasons. By using the raw
expression levels, one could avoid making such assumptions.
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Some studies have explicitly used sequence information to try to obtain compara-
ble expression levels across platforms (Morris et al., 2005; Mecham et al., 2004a;
Mah et al., 2004; Wu et al., 2005; Ji et al., 2005). This idea isnatural, since much
of the systematic variability between expression level measurements between (and
even within) platforms is attributable to sequence-related factors, such as cross-
hybridization, alternative splicing, inaccurate annotation of gene sequences, and RNA
degradation. Cross-hybridization occurs when a gene hybridizes to “near matches”
on the array, which can attenuate estimates of gene expression. Certain sequences
are more likely to cross-hybridize (Zhang et al., 2003), so may result in less reli-
able measurements of gene expression. Also, single genes may be transcribed into
multiple different mRNA variants. These alternatively spliced variants may cause
some sequences corresponding to different exons from the same gene to be discor-
dant. Additionally, not all probes on microarrays map to annotated sequences in pub-
lic databases. These probes tend to be less reliable (Mechamet al., 2004b), which
may explain some of the lack of concordance across platforms. In a study involving
matched samples run on Affymetrix and nylon cDNA arrays, Ji et al. (2005) showed
that the correlation of expression levels these platforms was greater for sequences
with matches in the RefSeq database. Finally, RNA degradation can affect probes
differentially, since sequences closer to the endpoints ofthe gene may be more sus-
ceptible to this degradation than sequences near the middle. These factors are relevant
when comparing completely different technologies,e.g.spotted glass cDNA arrays
and Affymetrix oligonucleotide arrays, as well as when comparing different versions
of the same technologies,e.g.different versions of Affymetrix arrays or glass cDNA
arrays constructed using different clones. We believe thatmethods that explicitly take
into account these known biological and technological factors ultimately will result
in the most successful methods for combining information across platforms.

3.3 Overview of Affymetrix Oligonucleotide Arrays

Generally speaking, there are two major types of microarrays, cDNA arrays and
oligonucleotide arrays. One key difference between these technologies is that on
cDNA arrays, genes are represented by a single cDNA clone spotted on the array,
while on oligonucleotide arrays (Lockhart et al., 1996), genes are represented by
“probes,” or short sequences of nucleotides from the targetgene sequence. Affymetrix,
Inc. (Santa Clara, CA) is the largest producer of oligonucleotide arrays, which they
call GeneChips. Affymetrix GeneChips contain multiple probes for each gene. For
the remainder of this chapter, we focus our attention on Affymetrix oligonucelotide
arrays, which in practice are the most commonly used arrays today.

The Affymetrix probes each consist of a sequence of 25 bases from the target gene,
which generally contains a total of several hundred or thousand base pairs. Since not
all sequences bind equally well, there is natural variability between the expression
level measurements for different probes taken from the samegene. In order to av-
erage over some of this variability, each gene is represented by a number of probes,
which together form a “probeset.” These probes are scattered across the array. For



36 ALTERNATIVE AFFYMETRIX PROBESET DEFINITIONS

each probe, there is also a corresponding “mismatch” probe,which contains the iden-
tical sequence except with the 13th base replaced by its Watson-Crick complement.
The mismatch probes are intended for normalization, although they have not been
shown to be clearly useful for that purpose (?).

The probes are constructed based on sequence information contained in GenBank
(http://www.psc.edu/general/software/packages/genbank/genbank.html), a public
archive of DNA sequence information, UniGene (http://www.ncbi.nlm.nih.gov/entrez/
query.fcgi?db=unigene), which partitions these sequences into non-redundant clus-
ters presumably corresponding to genes, and RefSeq (http://www.ncbi.nlm.nih.gov/
RefSeq/), which is constructed by the NCBI to represent the state of the art in terms of
the sequences of known genes. As this information has evolved over time, Affymetrix
has produced different versions of its GeneChip. The most commonly used chip types
used in human studies include the HuGeneFL, the U95Av2, and the U133A.

The HuGeneFL was introduced in November 1998, and its sequence clusters are
based upon UniGene build 18. It contains information on roughly 5600 genes, and
each gene is represented by roughly 20 probe pairs. The probes corresponding to the
same probeset are placed together in the same region of the array. The U95Av2 was
introduced in April 2000, and is based upon UniGene build 95.It contains informa-
tion on roughly 10,000 genes, each of which is represented by16 probe pairs. The
probes are randomly distributed across the array. The U133Awas first introduced
in January 2002, and is based upon UniGene build 133. It contains information on
14,500 genes, and contains 11 probes per gene. The probes arearranged on the array
in such a way as to optimize the probe synthesis efficiency.

Frequently, researchers wish to combine information across experiments conducted
using different versions of Affymetrix GeneChips. As new studies are conducted us-
ing more recent versions of the chips, researchers want to still use information from
previous studies performed using older generations. Also,some researchers may
want to perform meta-analyses on data collected from multiple studies performed
at different institutions. It is not easy to merge information across chip types, since
there are some genes represented on newer chips that were noton previous ones, and
even the common genes are represented by different sets of probes on the different
chips, so their expression levels are not generally comparable.

In the remainder of this chapter, we describe in detail two methods we have devel-
oped (Morris et al., 2005; Wu et al., 2005) to combine information across studies
using different Affymetrix chip types. These methods use sequence information to
define new probesets that yield comparable expression levels across different chip
types. Our hope is that the raw expression level values usingthese redefined probe-
sets are sufficiently comparable that they can be combined across versions. For each
method, we describe the method and use an example data set to demonstrate the
concordance of expression levels across different array types.
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3.4 Partial Probesets

The incompatibility of expression levels across chip typesis largely due to the fact
that different sets of probes are used to represent the same genes on different chips.
We expect, however, that individual probes present on multiple chips should yield
comparable expression levels across chips. Thus, one approach for obtaining com-
parable expression levels across studies using two different chip types is to only use
“matching probes” that are present on both chip types.

For example, suppose we have microarray data from two studies, one performed
on the HuGeneFL chip and the other on the U95Av2. The HuGeneFLcontains a
total of roughly 130,000 probes partitioned into 6,633 probesets, each containing 20
probe pairs, while the U95Av2 contains a total of roughly 200,000 probes partitioned
into 12,625 probesets, each containing 16 probe pairs. There are a total of 34,428
“matching probes” that are present on both chip types.

After identifying these matching probes, we then recombined these into new probe-
sets based on the most current build of UniGene. We refer to these new probesets
as “partial probesets.” Note that because they are explicitly based on UniGene clus-
ters, these probesets will not precisely correspond to Affymetrix-determined probe-
sets. Frequently, multiple Affymetrix probesets map to thesame UniGene cluster.
We then eliminated any probesets containing just one or two probes, since we ex-
pected the gene expression measurements based on so few probes to be less reliable.
When performed based on UniGene build 160, this left us with 4,101 partial probe-
sets. In general, we expect these probesets to be smaller than the Affymetrix-defined
probesets, since they only use the matching probes. Figure 3.1 contains a plot of the
number of probes within each of these partial probesets. Most of the probesets (84%)
contained 10 or fewer probes, and the median probeset size was seven. There were
several probesets containing more than 20 probes.

3.5 Example: CAMDA 2003 Lung Cancer Data

Two independent studies were performed at Harvard University (Bhattacharjee et al.,
2001) and University of Michigan (Beer et al., 2002), both focusing on the same
question of relating gene expression data to survival in lung cancer patients. These
data were part of the 2003 critical assessment of microarraydata analysis (CAMDA)
competition (http:/www.camda.duke.edu/camda2003).These studies both used Affymetrix
GeneChips, but the Michigan study used the HuGeneFL while the Harvard study
used the U95Av2. Our goal in analyzing these data was to combine information
across both data sets to identify prognostic genes, whose expression levels provided
prognostic information on patient survival over and above what is already provided
by known clinical factors. We used partial probesets to quantify the gene expression
levels, and demonstrated that this resulted in comparable expression levels across the
two chip types, without any loss of precision from using onlya subset of the probes.
We identified a number of prognostic genes in our pooled analysis that were not dis-
covered in the analyses performed on the individual studies, highlighting the benefit
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Figure 3.1: Histogram of number of probes in each “partial probeset.”

of pooling data across studies. We first summarize these datasets, then describe our
analyses to validate the partial probeset method and obtainprognostic genes. More
details of this analysis can be found in Morris et al. (2005).

3.5.1 Overview of Data Sets

The Harvard study analyzed 186 lung tumor samples using U95Av2 Affymetrix
GeneChips. From these, 125 were adenocarcinomas for which clinical information
on the corresponding patients was available, including gender, age, stage of disease,
and survival time. Applying hierarchical clustering to these data, Bhattacharjee et al.
(2001) identified four distinct subtypes of adenocarcinomawith different molecular
profiles, and further demonstrated that these subtypes had different survival prog-
noses.

The Michigan study analyzed 86 lung adenocarcinoma samplesusing HuGeneFL
Affymetrix GeneChips. All of these samples also had corresponding clinical infor-
mation, including gender, age, stage of disease, and survival time. Using univariate
Cox regressions, they identified a number of genes whose expression levels were
associated with patient survival. They subsequently constructed a “risk index” using
the top 50 genes, and demonstrated that this risk index helped predict patient survival
both in their own data and in independently obtained data from another experiment
(Bhattacharjee et al., 2001).

In our own analysis, we first performed various quality control checks, after which
we removed 10 arrays from the Michigan study and one from the Harvard study that
demonstrated poor quality. This left us with a total of 200 arrays, 124 from the Har-
vard study and 76 from the Michigan study. Using the partial probeset definitions
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described above, we quantified the gene expression levels for each partial probe-
set using the Positional Dependent Nearest Neighbor (PDNN)model (Zhang et al.,
2003). Other quantification methods could have been used, but we chose this one
because we believe its use of probe sequence information to predict patterns of spe-
cific and nonspecific hybridization intensities can lead to more reliable and accurate
quantifications.

We also performed other preprocessing steps. We removed thehalf of the probesets
with the lowest mean expression levels across all samples, then normalized the log
expression values by using a linear transformation to forceeach chip to have a com-
mon mean and standard deviation across genes. We next removed the probesets with
the smallest variability across chips (standard deviation< 0.20), since we consid-
ered them unlikely to be discriminatory and more likely to bespuriously flagged as
prognostic. Finally, we removed the probesets with poor relative agreement (Spear-
man correlation< 0.90) between the partial probeset and full probeset quantifications
(see next section). After this preprocessing, 1036 probesets remained and were con-
sidered in our subsequent analyses.

3.5.2 Validation of Partial Probesets

Before analyzing the microarray data to identify prognostic genes, we assessed whether
our method for combining information across different Affymetrix chip types per-
formed acceptably. First, we checked whether the expression levels appeared to be
comparable across chip types. Specifically, we computed themedian and median
absolute deviation (MAD) log expression level for each partial probeset across the
Michigan samples run on the HuGeneFL chip and also for the Harvard samples run
on the U95Av2 chip. Since the patient populations in the two studies appeared to
reasonably similar, we expected to see high concordance in these quantities between
the two chips if the expression levels were comparable. We did not, however, expect
perfect concordance, since different patients were used inthe two studies. Figure 3.2
contains a plot of these quantities, and demonstrates good concordance between the
center and spread in the distribution of gene expression values on the two chips. The
concordance between these values was 0.961 for the median and 0.820 for the MAD,
so it appears that using the partial probeset method yieldedreasonably comparable
expression levels across the two chips.

Recall that partial probesets use only the matching probes,while completely ignor-
ing expression level information for the non-matching probes. This means that partial
probesets are generally smaller than the Affymetrix-defined probesets. The median
size of our partial probesets was seven, while the Affymetrix-defined probesets for
the HuGeneFL and U95Av2 chips have 20 and 16 probes, respectively. Since ad-
ditional probes can increase the precision in measuring theexpression level of the
corresponding gene, one might expect a loss of precision when using the partial
probesets to quantify expression levels. To investigate this possibility, we quantified
the expression levels for the full probesets of the Harvard samples using the PDNN
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Figure 3.2: Median (a) and median absolute deviation (b) expression levels for
each partial probeset based on the Harvard samples run on theU95Av2 chips vs.
the Michigan samples run on the HuGeneFL chip. The high concordance in these
measures suggests we obtain reasonably comparable expression levels by using the
matched probes.

model. The full probesets consisted of all probes on the array mapping to the Uni-
Gene cluster, i.e., not just the matching ones. We plotted the standard deviation for
each gene using the full probeset versus the standard deviation for the partial probe-
set, given in Figure 3.3. If the partial probeset quantifications were considerably less
precise, we would expect measurement error to cause the standard deviation to be
larger for the partial probesets. There was no evidence of significant precision loss
in this plot, as there is strong agreement between the standard deviations for each
gene using the two methods (concordance=0.942). This may seem surprising at first,
but upon further thought is reasonable, since we expect thatthe probes Affymetrix
retained in formulating the new chips may in some sense be the“best” ones.

We computed Spearman correlations between the partial and full probeset quantifica-
tions for each probeset to confirm that our method preserved the relative ordering of
the samples, i.e., the ranks. For example, we expected that asample with the largest
expression level for a given gene using the full set of probeswill also demonstrate the
largest expression level for that gene when using only the matched probes. The me-
dian Spearman correlation across all probesets was 0.95, suggesting that our method
did a good job of preserving the relative ordering of the samples. Interestingly, but not
surprisingly, most of the lower Spearman correlations occur for probesets with less
heterogeneous expression levels across samples and/or probesets containing smaller
numbers of probes. It appears that our partial probeset method worked quite well.
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Figure 3.3: Standard deviation across Harvard samples for each gene based on full
and partial probesets. A “full probeset” contains all probes on the U95Av2 chip map-
ping to a unique UniGene ID, while the corresponding “partial probeset.”

3.5.3 Pooling Across Studies to Identify Prognostic Genes

We pooled the data across these two studies to identify prognostic genes offering pre-
dictive information on patient survival. We were not primarily interested in finding
genes that were simply surrogates for known clinical prognostic factors like stage,
since these factors are easily available without collecting microarray data. Rather,
we were interested in finding genes that explained the variability in patient survival
that remained after modeling the clinical predictors. Thus, we fit multivariable sur-
vival models, including clinical covariates in all survival models we used to identify
prognostic genes.

We screened the 1036 genes to find potentially prognostic ones by fitting a series
of multivariable Cox models containing age, stage (dichotomized as low, stages I-
II, and high, stages III-IV), institution, and the log-expression of one of the genes
as predictors. The institution effect was included in the model to account for differ-
ences in survival that were evident between the two studies,even after accounting for
known clinical covariates. We obtained the exactp-values for each gene’s coefficient
using a permutation approach. In this approach, we first generated 100,000 datasets
by randomly permuting the gene expression values across samples while keeping the
clinical covariates fixed. We subsequently obtained the permutationp-value for each
gene by counting the proportion of fitted Cox coefficients that were more extreme
than the coefficient for the true dataset. A smallp-value for a given gene indicated
potential for that gene to provide prognostic information on survival beyond the clin-
ical covariates. We also obtainedp-values using asymptotic likelihood ratio tests
(LRT) and the bootstrap to assess robustness of our results.
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If there were no prognostic genes, statistical theory suggests that a histogram of these
p-values should follow a uniform distribution. An overabundance of smallp-values
would indicate the presence of prognostic genes. We fit a Beta-Uniform mixture
model to this histogram ofp-values using a method called the Beta-Uniform Mix-
ture method (BUM, Pounds and Morris, 2003), which partitions the histogram into
two components, a Beta component containing the prognosticgenes and Uniform
component containing the non-significant ones. We used thismodel to identify ap-
value cutoff that controlled the false discovery rate (FDR,(Benjamini and Hochberg,
2000)) to be no more than 0.20. This means that of the genes flagged as prognostic,
we expect at most 1 in 5 were false positives.
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Figure 3.4: Histogram ofp-values from permutation test on gene coefficient in Cox
model containing clinical covariates and each one of the 1036 candidate genes. The
corresponding histogram for the LRT is nearly identical.

Figure 3.4 contains the histogram of permutation testp-values. The overabundance
of very smallp-values indicates the presence of some genes providing information
on patient prognosis beyond what is offered by the modeled clinical factors. Table
3.1 contains a set of 26 genes that are flagged by the BUM methodusing FDR< 0.20,
which are those genes withp-values less than 0.0025. Many of these genes appear to
be biologically interesting and worthy of future consideration. We were able to link
10 of our 26 prognostic genes to lung cancer based on the existing literature. Four
others could be linked to cancer in general or other lung disease in the literature.
These genes are discussed in more detail in Morris et al. (2005).

None of the genes we identified appeared in the list of top 100 genes from the Michi-
gan analysis (Beer et al., 2002), and we only found one (CPE) that was mentioned
in the Harvard paper (Bhattacharjee et al., 2001). CPE was one of the genes defining
a neuroendocrine cluster that they identified and associated with poor prognosis. We
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Table 3.1: Set of genes flagged as prognostic by applying BUM on the permuta-
tion p-values withFDR < 0.20. Also included are the LRT and bootstrapp-values
and estimates of the Cox model coefficient. A ‘*’ indicates the p-value was below
the BUM significance threshold. The identity of the genes is also given. A negative
coefficient indicates that larger expression levels of thatgene correspond to a better
survival outcome.

Gene Identity Coef Prognosticp-values
Permut. LRT Bootstrap

FCGRT -2.07 < 0.00001* 0.00014* 0.0006*
ENO2 1.46 0.00001* 0.00002* < 0.0001*
NFRKB -2.81 0.00001* 0.00435 0.00404*
RRM1 1.81 0.00002* 0.00008* < 0.0001*
TBCE -2.35 0.00004* 0.00069* 0.0006*
Phosph. mutase 1 1.92 0.00008* 0.00020* 0.0004*
ATIC 1.81 0.00009* 0.00153* 0.0004*
CHKL -1.43 0.00010* 0.02305 0.0260
DDX3 -2.37 0.00017* 0.00012* 0.0002*
OST -1.64 0.00020* 0.00010* 0.0010*
CPE 0.72 0.00031* 0.00053* 0.0010*
ADRBK1 -2.20 0.00044* 0.00678 0.0030*
BCL9 -1.64 0.00067* 0.03602 0.0460
BZW1 1.33 0.00068* 0.00279* 0.0006*
TPS1 -0.64 0.00106* 0.00217* < 0.0001*
CLU -0.52 0.00109* 0.00239* 0.0024*
OGDH -2.19 0.00118* 0.00405 0.0020*
STK25 2.29 0.00122* 0.00152* 0.0080
KCC2 -1.70 0.00143* 0.00988 0.0220
SEPW1 -1.29 0.00145* 0.01026 0.0160
FSCN1 0.66 0.00150* 0.00241* 0.0103
MRPL19 1.12 0.00211* 0.03213 0.0340
ALDH9 -1.18 0.00223* 0.00378* 0.0020*
PFN2 0.63 0.00248* 0.00351* 0.0020*
BTG2 -0.75 0.00232* 0.00580 0.0140
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repeated our analysis separately for the Harvard and Michigan data sets,i.e.without
pooling, and only eight and one of the 26 genes, respectively, were flagged as having
p-values less than 0.0025, while 17 are not flagged, includingthe top gene in our list
(FCGRT). Thus, it appears that our pooled analysis revealednew biological insights
contained in these data that were not identified when analyzing them separately.

3.6 Full-Length Transcript Based Probesets

The analyses presented in the previous section suggest thatby using partial probesets,
we were able to obtain comparable expression levels across studies conducted at
different institutions using different chip types (HuGeneFL and U95Av2), allowing
us to perform a pooled analysis that revealed new biologicalinsights into lung cancer.
Unfortunately, this approach is not feasible when combining information across the
U95Av2 and U133A chips, since these chips share fewer probesin common than
the HuGeneFL and U95Av2. There are 34,428 probes (14%) on theU95Av2 that are
also present on the HuGeneFL, while there are only 11,582 probes (6%) that are also
present on the U133A. If we form partial probesets and eliminate those with less than
3 probes, we are left with only 628 probesets. Thus, we have explored less stringent
alternative approaches to use for combining information across these chip types.

One of the primary reasons probes yield discordant measurements is that they may
be responding to different transcripts alternatively spliced from the same gene. When
the transcripts are differentially regulated, the corresponding probes can yield con-
flicting signals. The current design of arrays ignores the effects of alternative splic-
ing. Thus, if we differentiate the probes that match sets of alternatively spliced tran-
scripts, we may be able to resolve the discordant measurements. Based on this idea,
we developed a new method to regroup the probes into probesets. In our new def-
inition of a probeset, all probes in the probeset must match the same set of full-
length gene sequences. We refer to such a probeset as a “Full-Length Transcript
Based Probeset” (FLTBP, (Wu et al., 2005)). Assuming complete inclusion of alter-
natively spliced transcripts, we can in principle ensure concordant behavior of the
probes within these probesets.

We now describe how we obtained these transcript-based probesets. First, we con-
structed a comprehensive library of full-length mRNA transcript sequences in the hu-
man genome by combining records in RefSeq (http://www.ncbi.nlm.nih.gov/RefSeq/)
and HinvDB (http:// hinvdb.ddbj.nig.ac.jp/index.jsp) databases. As of January 2005,
RefSeq (build 111504, human section) contained 28,712 full-length transcript se-
quences representing 23,809 genes. H-InvDB (version 1.7) contained 41,118 se-
quences representing 21,037 genes. All of the sequences in this database were val-
idated by full-length cDNA clones. We estimate that collectively the two databases
represent approximately 29,000 genes with 50,000 non-redundant transcripts.

We used this library as the basis for defining our probesets. For each probe sequence
used on the U133A and U95Av2 arrays, we identified all matching full-length tran-
scripts using the Blast program (http://www.ncbi.nlm.nih.gov/blast/). We aggregated
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the IDs of those transcripts with exact matches to constructa matched target list. We
found that 15% of the probes on the U95Av2 and 13% of the probeson the U133A
had no exact match in our library, and 38% of the probes on the U133A and 33% of
the probes on the U95Av2 matched more than two targets in our library, demonstrat-
ing that it was very common for one probe to match multiple targets.

By grouping the probes within the same matched target lists,we formed 23,972 and
14,148 probesets on the U133A and U95Av2, respectively. We call these probesets
“Full-Length Transcript Based Probesets” (FLTBPs). Because multiple probes in a
probeset are essential to reduce noise and bias, we discarded all small probesets
containing less than 3 probes, leaving us with 18,011 and 11,228 FLTBPs on the
U133A and U95Av2, respectively. Collectively, these FLTBPs contained 82% of the
probes on the arrays.

These new probesets were very different from the original ones. Only 9,893 of the
original probesets on U133A and 5,257 original probesets onU95Av2 were the
same after regrouping. Figure 3.5 shows a histogram of the number of probes in
each FLTBP. The probesets outside of the major peaks reflect division and fusion
of the original probesets. Detailed information of our probesets are stored on our
web site (http://odin.mdacc.tmc.edu/∼zhangli/FLTBP). This website also contains
chip design files (CDF) using FLTBPs following the format designed by Affymetrix
(http://www. affymetrix.com/index.affx). These CDF filescan be used to run MAS5,
RMA and dChip algorithms in BioConductor (http://www.bioconductor.org/).

Figure 3.5: Histogram of number of probes per FLTBP.

By matching the matched target lists of FLTBPs on the two arrays, we found 9,642
pairs of FLTBPs that can be mapped between the U133A and U95Av2. Affymetrix
has their own method for mapping probesets between different chip types (http://www.
affymetrix.com/Auth/support/downloads/comparisons/bestmatch.zip), which yields
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9,480 pairs of probesets between the U95Av2 and U133A chips.There are numerous
differences between these Affy-defined mappings and our FLTBPs. Only 52% of the
probe sets on the U133A and 48% of the probesets on the U95Av2 are mapped the
same way as our FLTBPs.

3.7 Example: Lung Cell Line Data

To compare our mapping method with that of Affymetrix, we used a data set con-
sisting of 28 paired measurements obtained by hybridizing identical samples on both
the U133A and U95Av2 arrays. Because of this paired design, we expect very little
biological variability between paired measurements on thetwo arrays, so any dif-
ferences observed should be attributable to technical sources. We now describe this
dataset and use it to demonstrate that the FLTBPs result in quantifications that are
more comparable across chip types than Affymetrix- based probesets.

3.7.1 Overview of Data Set

Thirty RNA samples from variant lung cancer or normal lung cell lines and one
human reference sample were hybridized on both U133A and U95Av2 arrays. Our
quality control procedures revealed that three array images had obvious defects, so
were discarded. This left us with 28 pairs of samples that we used in this study.

We preprocessed and quantified the gene expressions with PDNN (Zhang et al. 2003)
using the PerfectMatch software (ver2.2) (http://odin.mdacc.tmc.edu/∼zhangli/ Per-
fectMatch). For comparison, we also preprocessed and quantified the data using other
competing methods, RMA (Irizarry et al., 2003), MAS5 (http://www. affymetrix.com/
products/software/specific/mas.affx) and dChip (Li and Wong, 2001), using Bio-
Conductor (v1.5, http://www.bioconductor.org/), following the default settings in the
affy package (Irizarry et al., 2004).

3.7.2 Validation of Transcript-Based Probesets

In order to assess comparability across chip types, for eachgene, we computed the
correlations between the paired U95Av2 and U133A measurements across samples.
To enhance the contrast between two different mapping methods, in our comparisons
we focused on the probesets that differed between the two methods. Approximately
1/3 of the probesets were mapped differently, which resulted in 3,309 and 3,527
paired probesets for FLTBP method and Affymetrix method, respectively.

Figure 3.6 contains a histogram of these correlations across probesets for the two
mapping methods and four quantification methods. These histograms summarize the
observed distribution of the paired correlations across probesets. Figure 3.6A clearly
demonstrates that, when using the PDNN quantification method, the FLTBP map-
ping tends to yield better correlations than the Affymetrixmapping (p < 0.00001,
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Figure 3.6: Distribution of gene-to-gene correlation between probesets on two
U95Av2 and U133A arrays, combining information over all samples, using both
Affymetrix-defined probesets and FLTBPs. The correlationswere computed using
four different quantification methods, (A) PDNN, (B) RMA, (C) MAS5.0, and (D)
dChip.

Kolmogorov-Smirnov [KS] test). Notice the two peaks evident in the distribution
of correlations for the Affymetrix mapping. The minor peak contains a large group
of probesets with poor correlation across chip types. With other quantification meth-
ods, there is also evidence that the FLTBP method tends to result in better correlation
across chip types than the Affymetrix method, although thisevidence is not as strong
(Figures 3.6B-D,p = 0.00031, 0.00575, and0.00005 respectively). This improve-
ment from using the FLTBPs is likely due to the fact that the FLTBP adjusts for some
of the heterogeneity that is due to alternative splicing.

Note also that, when compared with Figure 3.6A, the distributions in Figure 3.6B-
D are shifted more toward low correlations. This suggests that, for these data, the
PDNN quantification tended to yield generally higher correlations than the RMA,
MAS5, or dChip quantifications. This is even more evident in the sample-by-sample
correlations between the chip types computed across genes,as shown in Figure 3.7.
This increased correlation observed from the PDNN method may reflect the man-



48 ALTERNATIVE AFFYMETRIX PROBESET DEFINITIONS

F
LT

B
P

A
ffy

P
S

F
LT

B
P

A
ffy

P
S

F
LT

B
P

A
ffy

P
S

F
LT

B
P

A
ffy

P
S

0.6

0.7

0.8

0.9

1.0
S

am
pl

e 
co

rr
el

at
io

ns

Figure 3.7: Distribution of sample-to-sample correlationbetween probesets on two
U95Av2 and U133A arrays, combining information over all genes, using both
Affymetrix-defined probesets and FLTBPs. The correlationswere computed using
four different quantification methods, PDNN, RMA, MAS5.0, and dChip, respec-
tively.

ner in which the PDNN model estimates and adjusts for the effects of non-specific
binding.

From Figure 6A, we see that even when using the FLTBPs, not allgenes displayed
high correlations across chip types. Many of these low correlations were observed
for genes that appeared to have low biological variability in these data. Low vari-
ability would make the noise component of the measurements dominate, resulting in
low correlations. There are, however, some probesets with low correlations that do
not have small variances. It is possible that some of the sequences corresponding to
these probesets were strongly affected by RNA degradation,or the currently avail-
able collection of transcripts may not include certain alternatively spliced variants
that were differentially expressed across the sample tests, causing the correlations to
become attenuated. Further work needs to be done to further reduce the effects of
cross-hybridization and RNA degradation, which will hopefully lead to even more
comparable expression levels across platforms.

3.8 Summary

In this chapter, we have illustrated the benefit of pooling data across multiple mi-
croarray studies. We performed a pooled analysis over two lung cancer microarray
studies, and identified new prognostic genes that were not detected by separate anal-
yses performed on the individual data sets. We also described two new probeset def-
initions that result in more comparable expression levels across different versions
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of Affymetrix oligonucleotide chips. The first method is based on partial probesets,
which only use probes present on both chip types and combine them together based
on UniGene cluster information. This approach works very well, but has limited ap-
plicability, since it is only feasible to apply across chip types that share many probes
in common. The second method does not restrict us solely to matching probes, but
works by recombining probes based on the set of full-length mRNA transcripts to
which they map. In this way, the probesets map to the same set of alternatively
spliced transcripts. Combined with the PDNN quantificationmethod which accounts
for non-specific binding, this approach appears to result inmore comparable expres-
sion levels across chip types than Affymetrix’s matched probesets. The benefit of
this approach is that it does not restrict attention to matched probes, so can be widely
applied to combine data across any chip types. It may even be possible to use this
principle to match up oligonucleotide array data with cDNA data, although this re-
mains to be seen.
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