Meta-analysis and Combining Information in
Genetics

Rudy Guerra
&
David Allison






Contents

1 Combining Information Across Genome-wide Scans

by Carol J. Etzel and Tracy J. Costello

1.1 Introduction
1.2 Meta-Analytic Methods for Genome Scans

1.2.1 Meta-analytic methods based pwalues and tests of
significance

1.2.2 Meta-analytic methods based on effect sizes
1.3 Choosing a method to best suit your analytic needs
1.3.1 Scenario 1: Raw data available on all studies

1.3.2 Scenario 2: All studies use similar linkage tests amilar
marker maps

1.3.3 Scenario 3: All studies used similar linkage testswith
different marker maps

1.3.4 Scenario 4p-values or LOD scores from different linkage
tests and different marker maps from published data are
available from all studies

1.4 Discussion
1.5 Acknowledgements
1.6 Appendix A

2 Genome-wide linkage studies
by Cathryn M. Lewis

2.1 Introduction
2.2 Statistical methods for meta-analysis of linkage €sidi

2.3 Genome Search Meta-Analysis method

10
11

11

12

12

12

13
14

15

15

16
16



CONTENTS

2.4
2.5
2.6
2.7
2.8
2.9

Collaborative or published information?
Summed ranks or average ranks?

Bin width

Weighted analysis

GSMA software

Power to detect linkage using the GSMA

2.10 Extensions of the GSMA
2.11 Limitations of the GSMA

2.11.1 File drawer problem
2.11.2 Garbage in, garbage out
2.11.3 Apples and Oranges

2.12 Disease studies using the GSMA
2.13 The Multiple Scan Probability method (MSP)
2.14 Conclusions

2.15 Acknowledgements

3 Alternative Affymetrix Probeset Definitions

by Jeffrey S. Morris, Chunlei Wu, Kevin R. Coombes, Keith a&ggerly,

Jing Wang, & Li Zhang

3.1
3.2
3.3
3.4
3.5

3.6
3.7

3.8

Introduction

Combining Microarray Data across Studies and Platforms
Overview of Affymetrix Oligonucleotide Arrays

Partial Probesets

Example: CAMDA 2003 Lung Cancer Data

3.5.1 Overview of Data Sets

3.5.2 Validation of Partial Probesets

3.5.3 Pooling Across Studies to Identify Prognostic Genes
Full-Length Transcript Based Probesets

Example: Lung Cell Line Data

3.7.1 Overview of Data Set

3.7.2 Validation of Transcript-Based Probesets

Summary

References

19
20
20
21
21
23
24
26
26
27
27
27
28
29
29

31

31
32
35
37
37
38
39
1 4
44
46
46
46
48

51






CHAPTER 1

Combining Information Across
Genome-wide Scans

Carol J. Etzel and Tracy J. Costello
University of Texas M. D. Anderson Cancer Center, Houstexas

1.1 Introduction

With the formation of international consortia to investgg@omplex disorders and
a variety of cancers, meta-analysis is quickly becominglaalde tool to combine
linkage results and narrow chromosomal regions of intefidst presumed etiology
of a complex disease is a combination of effects from mudtigenes and the en-
vironment. The possibility of identifying some of these genwhich most likely
have small effects, from a single study using traditiongtdige analysis methods, is
small. Instead, pooling raw data across independent stickea mega-analysis) or
pooling linkage results across independent studiesa meta-analysis) may be the
best means to identify these numerous genes with typicaiBllsffects. Among-
study heterogeneity, which may include differing markeps)anarker informativ-
ity, sample sizes, phenotype definition, ascertainmergrsels, and linkage tests, can
be problematic for a meta-analysis. Methods proposed tdlaauch problems are
discussed here.

The basis of meta-analytic methods in genetic linkage ivel@from pooling meth-
ods that have been available in the field of statistics for @&eyears. Such distin-
guished statisticians as Fisher (1925), Tippett (1931, Rearson (1933) provide
the earliest references to meta-analysis. These methadsased on testing a con-
sensus or omnibus null hypothesig( all null hypotheses from the individual stud-
ies are true) by combining thevalues from each of the individual studies. These
methods are nonparametric in the sense that they do not medyny distributional
assumptions regarding the data in the individual studiesgher, it is assumed that
each study tests a common (and combinable) null hypotHesliss (1984) provides
an excellent and detailed review of these early meta-anahdthods.

Meta-analysis for genome-wide scans has roots in methoasageed for individual
marker meta-analysis. These methods involved either pgelvalues (using the
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4 COMBINING INFORMATION ACROSS GENOME-WIDE SCANS

method of Fisher (1925)) or pooling estimates of genetiea$ or of proportion
of alleles shared identical by descent (ibd) among relataies (Li and Rao, 1996;
Gu et al., 1998). However, current technology has evolvedlltav investigators to
perform full genome scans and therefore, linkage testimgpisdone for a single
marker anymore. In this chapter, we review recent appboatiand extensions of
meta-analytic methods for combining information acrosiependent genome scans.
We also provide strategies to choose a method suited to ignatific goals.

1.2 Meta-Analytic Methods for Genome Scans

In this section, we review meta-analytic methods that haemlproposed and applied
to genome-wide scan studies. Our coverage of such methogdasonhée exhaustive
as we have tried to focus on such methods where power and smerlhave been
evaluated or methods (due to their ease of applicationidna been widely used.

1.2.1 Meta-analytic methods basedemalues and tests of significance

As mentioned in the Introduction, general applications etaranalysis have been
developed from methods based on combiniagalues. The method proposed by
Fisher (1925) has been widely used in genetic linkage and/reatensions have
been developed for meta-analyses involving genome-widesscSuppose that we
wish to complete a meta-analysis bstudies. Each studiyhasm markers. Let\,
denote thet® marker,t = 1,...,m, from studys, for s = 1, ..., k. Further define
pst as thep-value that provides evidence for linkage at the markif. We are not
assuming that each study used the same sampling schemé&agditest; however
the studies must be testing the same null hypothesis of kadim Using Fisher's
method, we can define

k
X7 =-2) In(ps) (1.1)
s=1

as the combined evidence for linkage at matkeracross all studies. We can further
define thep-value associated with'? as

P, =P(x3, > X7), (1.2)

where x3, is distributed as a chi-square variate with degrees of freedom. The
power and type | error of this method was evaluated by Guetah £1999) where a
per marker alpha level of 0.1% was used to account for geneitetesting. They
concluded that although Fisher’s method is applicable &rogne scans, the power
to detect linkage using this method is not equivalent to éichieved by pooling raw
data.

One of the caveats to using this method to carry out a genoite-weta-analysis
is that an investigator is not guaranteed that all of theistughcluded in a meta-
analysis will have used the exact same marker map. Or if thestigator is relying on
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published data, it is not guaranteed that results of albgestudies are published, or
of those that have been published, that results for all maikgolved in a particular
study will be readily available. Instead only informatiomlocal minimump-values
may reach publication. Therefore, the straightforwardiappon of Fisher’'s method
may not be feasible. Alternatives to Fisher's method haealpeoposed (informally
and formally) in order to apply this meta-analytic methorbas whole regions of the
human genome instead of single loci. One such informal egfitin was proposed
by Allison and Heo (1998) to combine data from several stuthat used different
tests for linkage and different markers to detect linkagdiwithe HumarOB region.
Their technique involved obtaining a singlevalue within theOB region from each
of five published studies that investigated linkage to bodgsrindex using different
testing procedures for different sets of markers. Fishmeshod was then used to
combine thep-values across the five studies. They concluded that metiysas is

a vital statistical tool that highlights the importance afbfished literature in the
absence of available raw data and increases the power tot deeiees influencing
complex traits. They note that their approach illustrates bne can conduct a meta-
analysis over multiple linkage studies investigating ajkirphenotype despite what
they describe as “worst case conditions.” However, we atigaethe situations that
Allison and Heo describe are realistic of early linkage jrdilons and worst case
conditions are those in which no meta-analysis can be padgdr

Badner and Gershon (2002b) formally considered a similatifization of Fisher’s
method so that meta-analysis can be performed for regionsathe human genome
instead of one marker at a time. In their paper, they defineditgmn (1.2) as the
Multiple Scan Probability (MSP) with*, substituting fops;, wherep?, is defined as
the minimum observeg-value for studys over a specified linkage regiamorrected
for the size of the linkage region. Their correction fact@swased on the Feingold
et al. (1993) estimate of the probability ofpavalue being observed in a specified
region size, namely

Pl = Cpst + 220G Z(pst) (P (D)) V[ (psr ) VANA] (1.3)

wherep,; is the observeg-value from studys over regiont, C is the number of
chromosomes) is the rate of crossovers per Morgan (which varies based ®n th
linkage method employed and family structure), G is the sizeegiont in Mor-
gans,®!(-) is the standard normal inverse functiaof(;) is the normal density
function, A is the average distance in Morgans between adjacent maakdrthe
functionV is a discreteness correction factor far Feingold et al. (1993) show that
V(z) ~ exp(—0.583z), for z < 2. Under certain conditions, they also show that
equation (1.3) is equivalent to the Lander and Kruglyak g)98value correction
factor. Badner and Gershon (2002b) show via simulationttieatype | error rate for
this modification is at least as low as for any single genoraa study and that power
to detect linkage using this method is equivalent to thatadlipg raw data. This
method has been applied to studies involving autism (BadndrGershon, 2002b)
and bipolar disorder and schizophrenia (Badner and Ger2t@2a).

Another caveat to applying Fisher's method to genome-wmms is that many
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widely used linkage tests are one-sided (i.e., LOD scoree hdower bound of 0)
whereas the distributional assumptions for Fisher’'s nabmethod assume that the
p-values were derived from two-sided tests. Province (2804gested an extension
of Fisher’s general method to adjust for the potential bfasombining linkage re-
sults from such one-sided tests. Citing the one-to-onespondence between LOD
scores ang-values (Ott, 1999)

pst = 1 — ®[sign(LOD)\/2In(10)|LOD]], (1.4)

whered(-) is the standard normal distribution function, Provinceoramended that
LOD scores equal to zero should be assigneevalue equal tom ~ 0.72 in-

stead of equal to 0.50 as given by equation (1.4) or equalG@4.suggested by
maximume-likelihood theory. By doing so, the resulting tetdtistic obtained from
Fisher's method using-values extracted from published or derived LOD scores
would roughly follow the assumed chi-square distributiagtnihe appropriate num-
ber of degrees of freedom (2 times the number of studies)nthdenull of no link-
age. This extension of Fisher's method has been appliedriorge scan studies
involved in the National Heart, Lung and Blood Institute FgrBlood Pressure Pro-
gram looking for obesity- related genes (Wu et al., 2002pdntension-related genes
(Province et al., 2003) and diabetes (An et al., 2005).

The Fishep-value method and its subsequent extensions do not neitgssaount
for among-study heterogeneity with one of the most obviafisrénces being sam-
ple size and hence admittedly are subject to potential iisen not accounting for
such differences among studies. Although decision caiteould be developed such
that only studies that are most homogeneous (with respsamiple size or pedigree
selection) be included in a meta-analysis, this may exctademany studies with
viable linkage information and hence limit the sample srdlie meta-analysis (see
discussion below). Rice (1990) suggested a reparametierizaf Fisher's method
such that the evidence for linkage from each study can behtetigby the corre-
sponding study’s sample size. In doing so, he suggestedhbatvalue, p;, be
transformed into a standard normal variatg, = ®~!(p;) where®1(-) is the
standard normal inverse function. A weighted average ofthalues at marker(or
regiont if applying this reparameterization to the Badner and Gargxtension) can
be calculated

D emy Nazar

> emi N

where N, is the sample size (number of pedigrees, number of sib;petics) for
studys. Under the omnibus null hypothesis of no linkage/+/V ar(z.;) follows a
standard normal distribution where

Z.t

(o e N2
Var(z:) = (Zf,zl N

Other novel meta-analytic methods for genome scans thai-uakies or other out-
comes of significance tests involving linkage which are naemsions of Fisher’s
method have been proposed specifically for genome-scanranatgsis. One such
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widely used method, the Genome Search Meta-analysis MB8#A), devel-
oped by Wise et al. (1999) is based on a nonparametric ramipg/alues or LOD
scores within specified genetic regions (or bins). Supgdusaxe have split the chro-
mosomes intan bins. For each genome-scan stedy = 1, ..., kK =number of total
studies) the most significant linkage result (whether iph@lue, LOD score or an-
other linkage test statistic) within each Hift = 1,...,m) is identified. The bins
are then ranked within each study where the most signifidanmelseives the highest
rank. The ranks for each bin are then summed across the stadieh that

V= R(X) (L5)
s=1

where X, is the most significant linkage result for bif studys, andR(-) is the
ranking function. As with Fisher's method, there are no agsions that each study
used the same sampling scheme or linkage test, or that eacimgescan used the
same set of markers. Additionally, however, they showeakih simulation that the
GSMA is useful when studies use different ascertainmengregls, marker maps,
or statistical methods to detect linkage. citetWise199%9vdd the null distribution
of V; given in (1.5) and Koziol and Feng (2004) refined the derratf the null
distribution using probability generating functions arrdypded approximations to
the GSMA null distribution.

Wise (2001) further proposed an extension of the GSMA mesiioti that candidate
region studies can be included in the meta-analysis witlogeawide studies. In

this extension, a simulation procedure is developed t@assinks to the candidate
regions where the ranks reflect the expected ranks undemthbypothesis of no

linkage for a genome-wide study. By assigning the ranks ¢ocindidate regions
in this manner, Wise concludes that the false positive satet inflated due to the
higher marker density of candidate region studies.

Babron et al. (2003) updated the GMSA method by first reptatire rankV; in
equation (1.5) with the average rank of hiand the ranks of its two flanking bins,
defined asV_; and V. in order to adjust for arbitrary bin construction. Second,
they defined a weighting scheme for the ranks such that tHeafstudys in bin

t, namelyXy; in (1.5), is weighted by the number of pedigrees in stady order
to account for differing information content across stsdiglthough Babron et al.
(2003) suggested weights to account for differing infoiioratontent, a formal test
for heterogeneity among the studies for the GSMA method wasitroduced until
2005. Zintzaras and loannidis (2005b) propose three wetbhtetrics to measure
among-study heterogeneity for the GSMA method: 1. sum ofsbighted squared
mean rank deviations, 2. sum of the weighted absolute medndeviations and 3.
weighted sum of the distinct absolute rank differencestiesmore, Zintzaras and
loannidis (2005a) have developed a software program HEGE8&Mperform the
GSMA meta-analysis (unweighted or weighted as specifiechbyuser) as well as
provide the user with heterogeneity results.

In their original paper, Wise (2001) suggested a bin widtt3@fcM, but recently,
Marazita et al. (2004) proposed repeating the GSMA withalde bin-length starting
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points in order to determine minimum regions of maximum #gigance (MRMS).
The resulting bin-shifting method identifies narrower oe of positive findings
compared to the original GSMA which then leads to narrowgiores to be followed-
up with fine-scale mapping.

Since its original publication, the GSMA has been the modelyiused meta-analytic
method for genome scans, specifically due to its ease of ukewariance to whether

the studies are from one-sided or two-sided tests or if drdymost significant results
have been reported. A number of investigators have appgieGSMA method to a

variety of complex diseases: multiple sclerosis and oth&®immune diseases (Wise
et al., 1999; Fisher et al., 2003; Sagoo et al., 2004), inflatorgy bowel disease

(Williams et al., 2002; van Heel et al., 2004), asthma (W&)1), celiac disease
(Babron et al., 2003), schizophrenia and bipolar disordleesinson et al., 2003;

Lewis et al., 2003; Segurado et al., 2003), obesity (Johesat., 2005), diabetes
(Demenais et al., 2003), coronary heart disease (ChiodihLawis, 2003) and hy-

pertension (Liu et al., 2004; Koivukoski et al., 2004) to reeafew.

1.2.2 Meta-analytic methods based on effect sizes

A meta-analysis based on combining the results from sigmifie tests can be limited
or misleading, especially in cases where the concordandesoordance of signifi-
cant linkage between two studies may not reflect the existeftrue linkage, but
rather may be based on the amount of heterogeneity betweestutlies. Although
adjustments for heterogeneity have been proposed for thegeds, combining ef-
fect sizes may be a better approach as many of these metheodassd on random
effects models that naturally allow the user to adjust fooagistudy heterogeneity.

Loesgen et al. (2001) developed a meta-analytic test tmapates a weighted aver-
age estimate of score statistics

2521 Wt st
k
Zs:l w?t

whereZ; is the NPL score statistic andl; is the assigned weight from studgt po-
sitiont. They proposed several weighting schemes such as samg]éndmation
content and an exponential function based on marker distdbempfle and Loes-
gen (2004) compared the power of the method proposed by eae=ical. (2001) to
Fisher's method, the GSMA and othgtvalue based meta-analytic methods. They
showed that meta-analysis performed using weighted efiees had more power
to detect linkage than thevalue methods with nominal increases in false positive
rates. Further, they found that their method based on effees was more robust and
consistent across simulation aspects compared to-ttadue based methods.

Zma, = (1.6)

Etzel and Guerra (2002) developed a meta-analysis techibigeombine Haseman-
Elston test statistics across studies that have distindtenanaps. For this method
they suppose thaf,;, the Haseman-Elston slope estimate (Haseman and Elston,
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1972), andS2,, the corresponding variance estimatedof for the market of study

s are available for each df studies. They further defingL,,q = 1,...,v} as the
set of analysis points such that and L, are at each endpoint of a chromosome seg-
ment, respectively, and the distance between any two atdjpointsZ; andL;; is
constant and equal to L/t where L is the length of the chrommessegment. For each
analysis point, they calculate the statistits, and.S2,, utilizing markers withinD

cM of Ly, where

Bst Szt
——— andSyy = ———.
[1 - 298tq]2 tq [1 - 298tq]4
The valud, is the recombination fraction between markef studys and analysis

pointL, as estimated using a general mapping function, for exarpkambi. Next,
they calculate the weighted least-squares estirfiase L,

ﬂstq =

k MNsq A
B _ Zs:l t=1 Wst PBstq and 1
q = % Tiag Wst = 37 g2
D1 Dot Wt B stq

wherek is the number of studies and,, is the number of markers withib cM of
L, for studysando3 is between-study variance. The estimatgr for o3 at L, is

k Msq k Msq

2o 1 Bg — ]2 — — 1 2
7h, = s 2 2 =l = 3 S

%
s=1Tlsq s=1 t=1 s=1"sq s=1¢t=1

wherej., is the average of thg.,, that are withinD cM of L,. The variance of},

is1/5%_, 5774 w,,. The analysis poink,, such that,, = 3,/+/V ar[3,] is min-
imum and significant at a specified level is the point estimatecation of the QTL.

Likewise, the estimate of genetic variance is givenﬁ@y: ’f—‘g. Etzel and Guerra
(2002) further describe a bootstrapping procedure to cocistonfidence intervals
for location of the putative QTL and genetic variance. Thylegimulation, they show
that the empirical power using this procedure remained &igim when power at the
individual study level was low. This procedure was used &ess linkage of im-
munoglobulin E (IgE), an asthma related quantitative txéstng the nine data sets
provided by the Genetic Analysis Workshop 12 and found ssifgelinkage for two
regions on chromosome 4 and one region on chromosome 11.

The method proposed by Loesgen et al. (2001) assumes tistidikts use the same
marker map but different linkage tests and the method pexpbyg Etzel and Guerra
allows for differing marker maps among the studies invojvealvever, the Etzel
and Guerra method is limited by the fact all studies must beesame linkage test.
Etzel et al. (2005) (***GAW14) proposed a meta-analytic gedure that combines
the methods of Loesgen et al. (2001) and Etzel and Guerr&j20@ results in a
more flexible procedure to combine effect sizes across djalsdudies that perform
different linkage tests on different marker maps. The tésylMeta-Analysis for
Genome Studies (MAGS) method is based on a weighted avefaffect sizes that
are obtained through the reported linkage summary staistiuppose that we wish
to complete a meta-analysis @rstudies. Each studyhasm; number of markers.
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It is not assumed that the studies have the same number obreark # my,i #
j, nor it is assumed that the studies have the same marker faps. specified
chromosome, led/,, denote the!” marker from studys, for s = 1,...,k andt =
1,...,my. Define{L,,q = 1,...,1} as the set of analysis points such that Ihe
are equally spaced across the chromosome. For each/sgt oh a chromosome, let
Z 4 be the associated score statistic. As noted by Dempfle ansheag2004)7 ,;
can be the NPL score statistic as most standard multipoikadje analysis software
packages includes the calculation of such statistics. Mewg; can also be derived
from other linkage related statistics, such as an HLOD soomyen gp-value with
the correct transformation (see Appendix A). For each amlyointL,,, calculate
the weighted normal variate:

k me
Dot 2otmt Lonr, ) Wstq Zst
b
k my 2
\/Zs=1 Zt:l Iq{Msf,}wstq

wherews, is the weight given to marked/,;. The indicator function/,,, ,, is
defined as 1 if marker is within a set distanbecM from analysis point_, and 0
otherwise. The weighi, for marker),, can be a function of study sample size,
information content at that marker, and/or distance (rdgoation fraction,f,:,)
between marked!; and analysis poink,, saywstq; = f(ns)g(ICqiar,,3) M (Ostq)-

Zyma, =

The p-value for each analysis location then be compared to aeelttie determine
areas with combined evidence for linkage. NOTE: If all sasdiise the same marker
map, then the combined set of markers can replace the anglgiitsZ, and the
expression foZ, 4, simplifies to the statistic proposed by Dempfle and Loesgen
(2004). Etzel et al. (2005) applied this procedure to theutated data from the Ge-
netic Analysis Workshop 14 and correctly identified the dggeloci on chromosomes
1, 3 and 5; however, found low evidence of linkage to the disgaodifier genes on
chromosomes 2 and 10.

1.3 Choosing a method to best suit your analytic needs

Data can be obtained from published sources, open-souttste® or through con-
sortia group agreements. At times, the researcher may litedinm choosing a pre-
ferred meta-analytic method due to the type of data availédol a meta-analysis:
complete data on all studies through a consortium; dataraatdy contacting cor-
responding authors from published articles; data from iphbt reports; or some
combination of these three. However, the researcher whblésta obtain the data
of his/her choosing should then select the meta-analysisadéased on the most
robust methodology for identifying linkage within each iwidual study. Below, we
propose some scenarios that reflect reasonable situatiomkich a meta-analysis
would be performed and provide advice regarding the typeeaifranalytic method
to use.
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1.3.1 Scenario 1: Raw data available on all studies

This scenario could arise when the researcher is a membeidafaaconsortium
whereby members of the consortium freely share all data fhain individual stud-
ies. For a meta-analysis, this is the most ideal situatinoesthe researcher is rela-
tively free to reanalyze the data (separately from eacty3uging a preferred linkage
method and then combine the resulting linkage outcome wsiggne of the above
mentioned meta-analysis methods. In order fully accountbéween-study hetero-
geneity, the researcher should choose one of the metasiaigthods that allows
for such an adjustment (Dempfle and Loesgen (2004), Etzel(@085) or Zintzaras
and loannidis (2005b)). Even if the marker maps are diffeaemong the studies in
the consortium, the researcher could develop a simple ssheralign the marker
maps in order to perform the meta-analysis. The researcieer leas the option to
not perform a meta-analysis, but to complete a mega-asdlystead, such that the
raw data from each of the studies are combined into one contatabase. Some
notable examples of this approach were applied to multigkrasis (Cooperative”,
2001; GAMES and Cooperative”, 2003), celiac disease (Babtal., 2003), asthma
(lyengar et al., 2001), diabetes (Demenais et al., 2003)oledity related pheno-
types (Heo et al., 2002). A master marker map can be establispusing a marker
location database. If there are any missing values, onel @muisider imputation as
in Heo et al. (2002). The combined data is then analyzed wsistandard linkage
method. It has been shown (Guerra et al., 1999), that a meglgisés may have more
power to detect linkage than a meta-analysis; however, looeld consider the dif-
ferent types of heterogeneity that may be inherent in eacheoflifferent studies.
This heterogeneity may adversely confound or overshadewesults from a mega-
analysis and may arise from differing study designs (lirkagsults on extended
pedigrees may not combine well with linkage results fromsilrs, discordant pairs
or parent-offspring triads), varying ethnic/racial gre@eross study populations (dif-
ferent genes acting in different populations) and varymmggle sizes.

1.3.2 Scenario 2: All studies use similar linkage tests amilar marker maps

This scenario could also arise when the researcher is a meshldedata consor-

tium whereby the members individually analyze their ownadasing a common

linkage method and freely share linkage results insteadwfdata. Likewise, this

scenario could occur when the researcher personally dsrdamresponding authors
from published studies and requested complete linkageysisalesults from their

data. If these data are obtained from corresponding aythoesxtracted from the

literature, the researcher should collect the most det&iformation possible: i.e.,

score statistics instead pfvalues, marker information content, recruitment créeri
and sample schemes. For this scenario, we once again recuhting the researcher
choose a meta-analysis method that is flexible enough tawatfor between-study

heterogeneity: (Dempfle and Loesgen (2004) or Etzel et @DFRif score statistics

are available or Zintzaras and loannidis (2005b) if gilyalues are provided.
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1.3.3 Scenario 3: All studies used similar linkage testsAittt different marker
maps

This scenario is similar to scenario 2 except for the comrityraf the marker maps
between the studies and likewise, this scenario could docuhe same reasons as
scenario 2. The added complexity of differing marker magdsmat hinder a meta-
analysis over the individual studies, as long as the rekeareses a method that is
flexible in this respect. Once again, we advise that the rekearequest as detailed
linkage information as possible and apply a meta-analyasedh on the effect size
method proposed by Etzel et al. (2005) if score statistiesagailable or the GSMA
modification proposed by Zintzaras and loannidis (2005bhlf/ p-values are pro-
vided.

1.3.4 Scenario 4p-values or LOD scores from different linkage tests and wiffe
marker maps from published data are available from all stgdi

In this scenario, it is assumed that the researcher is b#snmmeta-analysis on sum-
mary linkage resultsptvalues or LOD scores) that are available from published ar-
ticles with no follow-up information obtained from the cesponding authors. Al-
though the availability of data in this scenario may seenitéichand can vary greatly
depending on the disease of interest, manuscript type amdgbof publication,
many meta-analyses are based on such data (Allison and 1968)(for instance).
For this case, the GSMA method (Wise et al., 1999) would bédst method to em-
ploy as long as the available data allow. If possible, theassher could also employ
any of the modifications to the GSMA method if s/lhe has amptdiaty information
to do so. In cases where application of the GSMA method is ossiple (such as
the scenario posed by Allison and Heo (1998)), then apjpicatf Fisher's method
is still viable.

1.4 Discussion

Herein, we review current meta-analytic techniques foratabination of linkage
data across studies in order to arrive at a consensus fageto a complex disease.
We also propose several scenarios to help guide the resedrctheir choice of
which meta-analytic technique to employ. However, we cautiiat meta-analysis is
more than just a method one can use to combine data togettiesugh the choice
of method is important, the researcher must also keep in thiaidthe application
of a method is just a small part of a complete meta-analysit. as study design
and participant recruitment is important at the beginnihgny linkage study, a re-
searcher who is about to embark on a meta-analysis showddalselop a study
design and participant study plan which includes a litesataview plan, as well as
study inclusion/exclusion criteria. The researcher migi gather as much infor-
mation on original studies as possible, which may includgacting corresponding
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authors. If raw data are provided, the researcher needsctdedeow to treat miss-
ing data. The researcher may have ample data to completeaaamelysis; however,
roadblocks to complete the meta-analysis may exist. Moshede roadblocks in-
clude differences among the studies with respect to: marigrs or denseness of
maps, family structure, environmental factors, poputasabstructure, distinct ge-
netic etiology/different pathways within the disease o¢iast, marker informativity,
sample sizes, ascertainment schemes, phenotype defiramaifor linkage tests. Ad-
ditional challenges include publication bias and timeHegs. Although we presented
meta-analytic methods that can handle some of these prebfenmone single meta-
analysis method exists that can handle all such problemstefdre, a researcher
must be willing to accept the limitations of his/her own matalysis.

Two topics that we have not discussed in detail within thisgthr involve determin-
ing an appropriate significance level for a meta-analysifopmed on genome scans
and the effect of publication bias (only positive linkageuks published). The topic
of genome-wide significance levels for individual studiesains in controversy and
to fully detail the debate with respect to a meta-analysiald/de a lengthy chap-
ter in itself. Instead, we leave it to the researcher to aersan appropriate signifi-
cance level, but advise the researcher to look to Mortong9%&nder and Kruglyak
(1995), Feingold et al. (1993), Sawcer et al. (1990), Ra88).9Rao and Gu (2001),
and Levinson et al. (2003) to gain more insights into the reit@ation of an appro-
priate significance level.

Publication bias in a meta-analysis may become a factor whenmesults of the
study impact the probability that it will be published in tliterature. In this event,
if the published literature was biased in favor of stataticsignificant results, you
would find a relative lack of studies reporting negative ewick for linkage and you
could incorrectly conclude a region to be more significaimiolved in the disease
in question than it really is. lyengar and Greenhouse (1988ent two procedures
to handle this potential bias by estimating what they teren'thil safe sample size.’
They first describe the procedure presented by Rosenth@dj1ghich determines
the minimum number of unpublished studies with null restdtpuired to reverse the
conclusion of the meta-analysis over the published stuatielsnote that Rosenthal
(1984) provides some ad hoc guidelines for interpretatigangar and Greenhouse
(1988) extend the approach described by Rosenthal (19®peesent a second
procedure based on selection models that uses a maximulihdi&e approach to
model the reporting process by weighting the results in tearanalysis. They note
that by using the MLE approach, you can examine how changing gssumptions
about the selection model change the parameter estimatesfarence of the meta-
analysis.
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1.6 Appendix A

Example transformation of a linkage summary to a scoressiati
1. Transform an HLOD to Chi-square variafé;; = 4.6 * HLOD;

2. Obtainp-value for each chi-square variate (Faraway, 1993):= 0.5 % [1 —
P2(X% < Xst)]

3. Transform the resulting-value to a normal variate by the inverse of the normal
distribution: Zs; = @ (py)



CHAPTER 2

Meta-analysis methods for
genome-wide linkage studies

Cathryn M. Lewis
Department of Medical and Molecular Genetics
Guy'’s, King’s and St. Thomas’ School of Medicine
King’s College London, UK

2.1 Introduction

Genome-wide linkage studies have been extensively usatktdify chromosomal
regions which may harbour susceptibility genes for comgiegases. The early en-
thusiasm for such studies has been replaced by the reafisi@t most complex
disease genes have only a minor effect on risk, and constgu@amy linkage stud-
ies have low power to detect such genes (Risch and Merikad§86). This was
well illustrated by a compilation of 101 genome-wide linksgjudies in 31 diseases,
which found that few studies achieved significant evidencérikage, and there was
little replication within each disease (Altmuller et alQ®). Replication of linkage
is an important concept in genome-wide linkage studies:diudies obtaining high
(if not significant) LOD scores in the same approximate red¢émds further weight
to these results. Thisd hocmethod of comparing results across studies is formalised
in meta-analysis, which provides statistical evidencelierco-localisation of link-
age evidence across studies. Meta-analysis can also pravéolution to the lack
of power in individual studies: combining weak evidenceiokage from several
studies may show an overall significant effect.

Several methods for meta-analysis of linkage studies hega proposed. The gold
standard is a complete analysis of genotype data from atribating studies (of-
ten termed ‘mega-analysis’). However, many study groupseluctant to share raw
genotype data, particularly if they are restricted by indakpartnerships. There are
also technical problems of pooling different marker mapsl difficulties in finding
an analysis method that is suitable for all studies. Poaijegotypes in short candi-
date regions has worked well in many collaborative studiEsenais et al., 2003;
Levinson et al., 2002).

15
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2.2 Statistical methods for meta-analysis of linkage studs

The meta-analysis methods used in epidemiological stedeedifficult to apply di-
rectly to genetic linkage studies. Methods that pool effézes €.g.0dds ratios)
across studies are inappropriate as linkage studies findlgjueport results as a test
statistic orp-value. In addition, we wish to assess linkage evidencesaaaegion,
not at a single location. Novel meta-analysis methods Haaefore been developed
to take account of the unique design and analysis stratagessin genetic studies.

For a meta-analysis gfvalues at a single point, Fisher's method for poojingalues
can be used, provided LOD score values of zero are treatedatigr (Province,
2001). However, unless testing for linkage at a strong aatdigene, specifying
a single location for the analysis may not be optimal. Simotestudies show that
maximum LOD scores have poor localisation, and can arise 30¢M from a sus-
ceptibility gene (Cordell, 2001). Assessing evidence s€t@ region therefore im-
proves the power to detect linkage in a meta-analysis; thagegy is implemented
in the Multiple Scan Probability (MSP) method (Badner andgBen, 2002b). This
method extends Fisherisvalue method, using the minimupavalues attained in a
region, with a correction to thevalue for the total region length included in the anal-
ysis (see below for further details). The meta-analysigsiehtity-by-descent (IBD)
sharing in affected sib pairs has been proposed for bothiedesand quantitative
traits (Gu et al., 2001) (***see also chapters in this bo#erforming meta-analysis
on this parameter of effect size is methodologically apgpgaHowever, the IBD
sharing statistic is rarely reported in publications, aniche methods rely on identi-
cal markers being genotyped in each study, which severstsicts their application.

2.3 Genome Search Meta-Analysis method

The Genome Search Meta-Analysis (GSMA) method (Wise e1889) was devel-
oped to circumvent some common problems of performing raatdysis on genome-
wide linkage studies. The GSMA is a non-parametric methath few restrictions
or assumptions, so that any genome-wide linkage searchecentloded, regardless
of study design or statistical analysis method.

In the GSMA, the genome is divided into bins of approximaggyal cM width. We
conventionally use 120 bins of 30cM length, so that for chweame 1, the region
between 0 and 30cM is assigned to bin 1.1, between 30-60civitb.B,etc. Let the
number of bins be , and the number of studies be For each study, the maximum
LOD score (or minimunmp-value) within each bin is identified, and the bins are
ranked, with the most significant result achieving a rank,ahe next highest result
arank ofn — 1, etc. Across studies, the ranks for each bin are summed; the sdmme
rank forms the test statistic for this bin. A high summed ramglies that the bin has
high LOD scores within individual studies, and may contasuaceptibility locus.
Under the null hypothesis of no linkage, the summed rank fainawill be the sum

of m ranks, randomly chosen from 2, ... ., n with replacement. Significance levels



GENOME SEARCH META-ANALYSIS METHOD 17

for each bin can be determined from the distribution functbsummed ranks (Wise
et al., 1999) or by simulation.

Under no linkage, the probability of attaining a summed r&hk a specific bin,
from m studies anah bins is:

m 0 for R<m
P X;=R) = LS (DR (kL) for m < R<mn
i=1 0 for R >m,

whereX; = rank of study; andd = integer part of R — m)/n (Wise et al., 1999).
Hence the probability of obtaining a summed rankibr greaterice. the p-value)
in a bin can be calculated. This bin-wigevaluepsy can also be obtained by sim-
ulation, permuting the bin-location of the assigned rafks.each study, the ranks
within a study are randomly re-assigned to bins, and therstihemed rank calcu-
lated for each bin. Fod replicatesdn summed rank values are obtained, and the
p-value for the observed summed rank is calculated from tmebeu of simulated
bins with summed rank greater than the observed summedfamf. Thep-value

is thenpsr = (r + 1)/(dn + 1), wheren is the number of simulated bins (North
et al., 2003). Calculating critical values from simulaids particularly appropriate
where the assigned ranks depart from the integer valu®s . ., n assumed in the
distribution function above, through tied ranks or missiaues (see Table 2.1).

The GSMA was developed to encompass diverse study desighareatysis meth-
ods. The linkage evidence may be extracted from any anatystbod: for exam-
ple, multipoint LOD scores calculated at each 1 cM, LOD ssaadculated at each
marker genotyped with the bin, or parametric LOD scoresutated at a series of
recombination fractions for each marker. For parametri©l€@ores, linkage is of-
ten tested using a series of models with different modestaodritance or different
penetrance/frequency parameters. The evidence for lenkag be assessed across
all models analysed, provided the underlying distributddhOD scores is approx-
imately equal in each model; this can be determined from tseilclition of LOD
scores across the genome. Thus, the maximum evidence kagknwithin a bin
would be the highest LOD score calculated, regardless afrtbeéel under which it
was obtained.

The bin-wise summed rankvalue psr assesses the information in each bin and
independently of other bins, and should therefore be ctadeor multiple testing.
With 120 bins, under no linkage, 6 bins would be expectedttrgisr < 0.05, and
1.2 bins to attaimsg < 0.01. Following Lander and Kruglyak (1995), we define
genome-wide evidence for linkage as that expected to oocehlnce once in 20
GSMA studies, and suggestive evidence for linkage as thpia@®d to occur once in

a single GSMA study (Levinson et al., 2003). Using a Bonferomrrection on 120
bins givesp = 0.00042 (= 0.05/120) for genome-wide significance, ard0.0083

(= 1/120) for suggestive evidence of linkage.

For a genome-wide assessment of linkage, the ordered raRk f@alue (por)
may be used (Levinson et al., 2003). This uses simulatiotiseoEomplete GSMA
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Table 2.1: Common sources of incomplete data in the GSMApasdible solutions

Missing data problem Possible solutions
Many bins with a maximum Use tied ranks, so 20 bins with a maxinbOD score of zero
LOD score of zero would be assigned ranks 10.5.
Bins with no genotyped markers Assign the median rauek(» + 1) /2 for n bins), or assign
or no linkage data a rank which is the weighted average of iftgribins

(since multipoint LOD scores are correlated in adjacenghin
Results are only reported from Contact study authors foirftdrmation, and carry out the study
regions with the strongest collaboratively. Alternatjyél the observed results fall intbbins,
evidence for linkage assign these ranks, — 1,n — 2,...,n — (b + 1), and assign all

remaining bins the average remaining rank. For many midsimg
or bins missing in several studies, this method is not atlésa
as the distribution function no longer provides a good fit.

Different chromosomes have been  Analyse all relevant ssilb$studies to obtain maximum information,
included €.g.some studies and for each bin/region, report results frenattalysis with most
have not tested the X chromosome) complete data. If chromego6is missing for- studies

(out of m), analyse the remaining — r studies for the whole genome,
and report these results from this analysis for chromosome X
Autosomes can then be analysed will all studies.

Two-stage genome wide study, Use only the first stage amalifsedistribution of the maximum

with some regions genotyped LOD score per bin depends orutimdar of families included, and a
on additional families consistent study design should leel @sross the genome.
High-density genotyping in Obtain original LOD scores fromarkers used in the genome search.
previously identified candidate The maximum evidence fakdge within a bin increases

regions

with denser genotyping, thus inflating the evidéocénkage
in more densely-genotyped bins.
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to compare the summed rank of the obserk&t highest bin with the simulated
distribution of summed ranks of thé" highest binj.e. compares the ‘place’ of the
bins in the full listing of results. So, in a simulation of 3D6omplete GSMAS, the
bin with the highest summed rank is compared to all 5000 bittsighest summed
rank, and the ordered rankvaluepor calculated. Similarly, the summed rank of
the bin in thek*" place is compared to summed ranks of all bins lyingfh place.
This test can identify evidence for many bins with increaseidience for linkage,
although the evidence for linkage within each bin may be msbda the study of
20 genome wide searches for schizophrenia, 12 bins in thghtezl analysis had
significant summed rank and significant ordered rapks; (< 0.05, por < 0.05).
Our simulations based on these studies showed that thisinatidn of significant
results was not consistent with occurring by chance (no¢tesl in 1000 GSMA
simulations of an unlinked study). The combination of a gigant psz and pr
is therefore highly predictive of a linkage within a bin, hewer empiric criteria for
linkage for an arbitrary number of studies have not yet bemreldped (Levinson
et al., 2003).

In assessing linkage we recommend the following hierarohynterpreting results:

1. A genome-wide significant summed rgikalue psr < 0.05/#bins)
2. Nominal evidence for linkage in both statistigs; £ < 0.05, por < 0.05)
3. Nominal evidence for linkage in the summed rapkg < 0.05)

No evidence for linkage should be declared where bins do ae¢ la significant
summed ranlp-value. Within bins with a significant summed rank, a sigaificor-
dered rankp-value can be considered to enhance the evidence for linkdgarly, if
the k" bin has nominal evidence for linkage under both statisties, any bin with
higher summed rank must also be considered significant. 8yimd the observed
summed ranks by size, with the distribution of ordered raakscree slope’ may be
seen where the summed ranks decrease rapidly and the ordefedbecome non-
significant (see Figure 2, in the inflammatory bowel diseaS#& (van Heel et al.,
2004)). In regions where thesr > 0.05 butpor < 0.05, one interpretation is that
the power to identify linkage in these bins is low, and a largeta-analysis might
increase significance gfsgr, whilst retaining the significance of the ordered rank
statistic.

2.4 Collaborative or published information?

Two main approaches are used to carry out a GSMA analysstlyrithe GSMA
may be based on published information, for example extrgdinkage statistics
(NPL/MLS scoresp-values.etc) from graphs and tables. In some cases, investiga-
tors may have posted detailed genome-wide results or atig@notype data on a
website. In papers, genome-wide studies are frequentfadisd as line graphs of
linkage statistics along each chromosome. This may be uséteiGSMA by di-
viding each chromosome into the required number of equatlebins, and reading
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off the maximum statistic attained in each bin. Inaccuratighe method arise from
different marker maps used in each study, or different closyme lengths (so that
bins will not be exactly compatible across studies). If neatkames are given, bins
may be designated more accurately by mapping the bin boyntakers relative to
the genotyped markers. In some studies, tables of linkagistits attained at each
marker genotyped are given. These markers may be placectlat@nt bins, and the
maximum linkage statistic for each bin identified. Commoahkpems arising from
the use of published data are listed in Table 2.1, with péssitlutions.

A more satisfactory method of performing a meta-analysigysts to form a collabo-
ration of relevant research groups, and use computer file®bfscores €.g.output
files generated from Genehunter, Alleged¢). This gives full information on the
location and magnitude of linkage statistic, and shouldroap the accuracy of the
resulting study. However, if some researchers do not wiglatticipate, the organis-
ers must then choose between an incomplete meta-analysigto§uality data and
a complete meta-analysis of lower quality data. In practioeta-analyses of genetic
studies have been widely supported by researcleegsschizophrenia (Lewis et al.,
2003), bipolar disorder (Segurado et al., 2003), and inflatony bowel disease (van
Heel et al., 2004)).

In any meta-analysis, the investigators rely on the higHityuaf results generated
by the original studies. Any errors due to genotyping protfdeinaccurate phenotype
definition, incorrect pedigree reconstruction, or pootygsia methods will be carried
through to the meta-analysis, and will reduce power to deteidence for linkage.
Errors seem likely to be random in each study, and shouletbes not introduce a
bias to the meta-analysis results.

2.5 Summed ranks or average ranks?

The GSMA was originally formulated using summed ranks, wttae highest rank
n is assigned to the bin with the strongest evidence for liekddis follows the
statistical convention that high test statistice.Gummed rank) show more evidence
against the null hypothesis. An alternative, more inteit@pproach is to assign rank
1 to the ‘best’, most significant bin, and then use the averagk as a test statistic
so that low average ranks give stronger evidence for linkageinson et al., 2003).
Statistically these approaches are equivalent, and a sdman& of R from n bins
andm studies can be converted to an average rarfkas1) — R/m.

2.6 Bin width

The GSMA is heavily dependent on the chosen bin width. Owgiteal description
of the GSMA listed 120 bins, defined by specific boundary marKeee table at
http: //wwv. kcl . ac. uk/ depst a/ nenoge/ gsma/ for full marker-bin in-

formation). The exact bin width depends on both chromos@meth (to give equal
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width bins on each chromosome) and marker location. Otheliet have chosen
different bin widths (see Table 2.2). Although narrow binaynintuitively provide
more information (see Figure 2.1), localisation througkdige information is broad.
Adjacent bins may show evidence for linkage (see, for exantheumatoid arthritis
(Fisher et al., 2003) and inflammatory bowel disease (van éted., 2004) GSMA
studies) and simulation studies have shown that the stebimfermation for linkage
may arise in the bin flanking the true location (Levinson et2003). In a study of
age-related macular degeneration (Fisher et al., 2005@riginal 120 bins (of 30cM
length) were then bisected, and ranks (for 240 bins) regassito determine whether
more bins would improve localisation information or idépntiovel loci. The results
were disappointing, with similar evidence for linkage satiag across several 15¢cM-
width bins, and no novel regions were identified. The re¢aidvantages of narrow
or wider bins are listed in Table 2.3.

2.7 Weighted analysis

The original formulation of the GSMA assumed that all stgdientributed equally.

However, a study of 500 affected sibling pairs (ASPs) habdrigpower to detect a
true locus than a study of 100 ASPs. This aspect can be refliectiee meta-analysis
by weighting the studies by sample size. The function sqextyped affected in-
dividuals) has been used in many studies (see Table 2.2)nanelised the power
to detect linkage by approximately 7% compared to unwetjhtealyses in a simu-
lation study based broadly on studies in the schizophreSiEl& (Levinson et al.,
2003). The optimal weighting function is unclear, partanly when some studies
have used extended pedigrees and others have used ASP&\ildretp detect link-
age will depend on the locus effects (mutation frequenayeprance), and for some
loci, extended pedigrees may have higher power to detdadim while affected sib
pairs may be the optimal sampling unit for other genes. Dmadiai single weighting
parameter is therefore somewhat unsatisfactory.

The chosen weighting function can be standardised by itsageevalue for all stud-
ies, so that the mean weight is 1. Using a narrow range of w&iglg.0.9 — 1.1)
will give an analysis that is very close to the unweightediysis. However, using
one study with a very high weighe(g.four studies with weights 3.0, 0.4, 0.3, 0.3)
will give results close to those obtained in this single gtugbth these situations
should be avoided, and alternative weighting functions mesd to be tested.

2.8 GSMA software

Software to perform GSMA on genome-wide linkage studiegadlable fromht t p: / / www. kcl . ac. uk/ depst
(Pardi et al., 2005). This program is written in C++ and adali on Windows, Mac,
and Unix/Linux platforms. The data input is a table of maximlinkage statistics
for each bin, for each study. The program allows for an abjtnumber of bins
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Table 2.2: Summary of published GSMA studigeria genotyped individualsaff: affectedsarp: affected relative pairgsp affected
sib pairs; Significance — Nom: nominal; Sugg: suggestivel:@enome-wide)

# bins withSR psr < 0.05,

Disease Publication # studies  #families #bins Weights Meugg./Gen. por < 0.05
Multiple sclerosis Wise, 1999 4 257 120 - 8/2/1 -
Type 2 diabetes *Demanais, 2003 4 1127 120 - 6/1/0 -
Schizophrenia *Lewis, 2003 20 1208 120\/(#aff) 12/4/1 12
Bipolar disordet *Segurado, 2003 18 370 120 \/(#aff) 9/2/0 2
Coeliac disease *Babron, 2003 4 442 115 #ped 5/5/2 -
Rheumatoid arthritis Fisher, 2003 4 570 120 #asp 10/3/1 -
Coronary heart disease Chiodini, 2003 4 807 124/(#asp) 4/3/1 -
Inflammatory bowel disease Williams, 2003 5 709 117 - 8/4/1 -
Crohn'’s disease Williams, 2003 5 472 117 - 9/4/0 -
Inflammatory bowel disease *van Heel, 2004 10 1253 105/(#arp) 8/5/1 6
Crohn’s disease *van Heel, 2004 10 711 105\/(#arp) 10/5/0 8
Ulcerative colitis *van Heel, 2004 7 314 195 \/(#arp) 5/1/0 0
Hypertension/blood pressure *Koivukoski, 2004 9 1992 12Q/(#aff) 9/3/1 2
Psoriasis fSagoo, 2004 6 493 110 - 5/2/2 -
Cleft Lip/Palate fMarazita, 2004 13 574 120 \/(#geno) 12/3/1 12
Body mass index *Johnson, 2005 5 505 121/(#96710) —/1/0 -
Age-related macular degeneration  *Fisher, 2005 6 908 12\§ﬂ#aff) 15/2/1 11

* = collaborative studyi = partially collaborative®very narrow phenotype definitiohbased on fine-scale mapping;
°maximum number, including candidate region follow-up
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Table 2.3: Comparison of properties affecting choice ofvitlth

Property Narrower bins Wider bins
(e.g.120 x 30cM bins) €.9.60 x 60cM bins)
Bin width Little variability Unequal bin widths for

different length chromosomes

Correlation inranks  Highly correlated, particularly Lowareelation
in adjacent bins for multipoint linkage analysis.

May violate distributional

assumptions for test statistic.

Localisation Reasonable, although adjacent Poor
bins may be significant

Power to detect High, except where Lower, except where wider

linkage maximum LOD scores occurin  bins substantiallyeases the

different bins study rank in linked regions
Consistency of bin Poor, especially based on More overlapd®n bins in
definition across published information adjacent studiesn when
studies poorly defined

and studies. Missing values are permitted, and bins reglasith the median link-
age statistic for that study. For studies reportingalues, the entry values should be

1 — p-value to ensure correct ranking of results. The progracutates the summed
rank, then determines the summed rank and orderedpaaftues (R r, Por) by
simulation. The user may determine the number of simulatiand the program is
rapid, completing 10,000 simulations in under 3 secondsaesitop PC. Weighted
and unweighted analysis is performed, using user-defingghige Three results files
are output: (a) results for the most significant bins only,afull genome listing of
bin, summed rankpsgr, por (weighted and unweighted analyses), and (c) ranks
assigned to each study, for data checking.

2.9 Power to detect linkage using the GSMA

An extensive simulation study of the GSMA was carried out byihson et al. (2003)
based on genome scans contributed to the meta-analysehipdgtrenia (Lewis
et al., 2003) and bipolar disorder (Segurado et al., 20@8)tlte simulation, a num-
ber of sib pairs with broadly equivalent information to trezlfgrees from the original
studies were used, with 1625 ASPs for schizophenia, 101 &A&Pbipolar disor-
der (narrow phenotype definition), and 501 ASPs for bipolsomier (very narrow
phenotype definition). These three studies therefore gwigla range of study sizes
covering those seen in many GSMA studies (Table 2.2).

The schizophrenia study had high power to detect linkagle avibcus conferring a
sibling relative risk f;) of 1.3 at a significance level gf < 0.01. For a significance
level of 0.05, a power of at least 70% was attained in the fatig situations:

e 1625 ASPs (schizophrenia), for a locus with= 1.15,
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e 1017 ASPs (bipolar disorder, narrow phenotype) for a locitis % = 1.3,
e 501 ASPs (bipolar disorder, very narrow phenotype) for asogith A = 1.4.

Full details of other assumptions required in the simukgtiacluding the number
of genotyped parents, marker density, and number of lodilsitad are given in the
original paper (Levinson et al., 2003).

The power of a study to detect linkage depends on the numlstudiesn and the
number of binse, in addition to the genetic effect size in each study. Theaye
rank threshold for declaring genome-wide, suggestive oninal linkage changes
with the number of studieém = 4,7,10,15,20) and the number of bingn =
60, 120), as shown in Figure 2.1. Note that the thresholds for genaide-{pgw )
and suggestivépsy ) linkage depend on the number of bins useglyp= 0.00042
andpsye =0.0083 for 120 bins, ang;y = 0.00056 ang s, = 0.017 for 60 bins;
nominal evidence for linkage was fixed jat= 0.05 throughout. With 120 bins, an
average rank threshold for nominal linkage is 32 for 4 steidimit over 48 for 20
studies — so the average rank is not even within the top tHirdmorted ranks. An
average rank of 32 gives nominal evidence for linkage withudlies, but provides
genome-wide evidence for linkage with 20 studies. With 6&piower average ranks
are required for linkage, so that the evidence must be sérandinked bins where
wider bins are used. Provided the maximum LOD scores for asldacalise to a
narrow region, using narrow bins provides the most eviddacénkage: with 10
studies, an average rank of 20 gives genome-wide evidenmdinkage if this is
obtained using 120 bins, but only nominal significance withbéhs. Reducing the
number of bins could, however, increase the power to deiekade if the LOD
scores’ peaks are too widely spread to be contained in aesbigl(for example if
the locus lies close to a bin boundary), so that the averades idecrease using fewer
bins.

One critical issue is the loss of information arising whea BSMA divides the

genome into discrete bins. Two simulation studies have ewatpthe power of the
GSMA to the power of ‘mega-analysis’, based on genotype fitata each study.

Dempfle and Loesgen (2004) showed that the power of the GSMAega than the
mega-analysis approaches tested, but they applied theeLand Kruglyak criteria

for genome-wide significance, which is much more stringbahtusing a Bonfer-

roni multiple testing correction (0.05/#bins). Using thispropriate, less stringent,
correction, Levinson et al. (2003) showed that the powethef GSMA to detect

linkage was actually higher than for the analysis of pooledaypes.

2.10 Extensions of the GSMA

Many different diseases have been studied using the GSMAiftteifurther method-
ological development has been carried out. Some authoesgraposed minor en-
hancements to the method. For example in their study ofcdis®ease, Babron et al.
(2003) used a summed rank function that was a weighted avefdlge ranks of a bin
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Figure 2.1: Critical values of the average rank requiredjiarome-wide, suggestive,
and nominal evidence for linkage, by number of bins.

and two flanking bins. This extends the potential area in twkiddence for linkage
can be shown, since high linkage statistics in a flanking bihb& included. How-
ever, it will also increase the correlation between sumraeéis in adjacent bins. An
alternative approach to the problem of maximum LOD scorésgoattained in ad-
jacent bins in different studies is ‘pooled bins’ used in theumatoid arthritis study
(Fisher et al., 2003). Here, adjacent bins are pooled, amariginal analysis of
bins is reanalysed as two analysesngR bins each, where bins 1+2, 3+4, ...are
pooled in the first analysis, and 2+3, 4+5 ... are pooled irs¢eond analysis. This
analysis would be valuable where a true locus lies close tio &dundary, and the
bin-location of maximum linkage evidence is inconsistesrbas studies. However,
as Figure 2.1 shows, reducing the total number of bins rediineepower to detect
linkage.



26 GENOME-WIDE LINKAGE STUDIES

In their study of cleft lip/palate, Marazita et al. (2004eus series of overlapping
bins from 0-30cM, then 10-40cM, 20-50cMitc.and assess the maximum evidence
for linkage across each possible bin. This should give blettalisation information,
and may determine whether two linkage peaks exist in on@meg¢iowever, there
are unresolved problems of multiple testing.

Recently, Zintzaras and loannidis (2005b) provided a majtension to the GSMA
in developing methods to test for heterogeneity of linkagdence within a bin. Het-
erogeneity testing is a standard component of meta-asatyspidemiological stud-
ies, where researchers test for evidence of differentediees across studies, but has
not previously been implemented in the GSMA. They apply ¢hagethods directly
to the rank statistics of each study, introducing three lgigbrrelated heterogene-
ity statistics. The significance of each statistic is assb$y simulation, randomly
reassigning the ranks to bins within each study, and relzdiog each heterogene-
ity statistic. The proportion of simulated bins wifpstatistics above the observed
value (for high heterogeneity), or below the observed véloelow heterogeneity)
is then tabulated for @a-value. Zintzaras and loannidis (2005b) applied the meth-
ods to published ranks in GSMA studies of rheumatoid arghffiisher et al., 2003)
and schizophrenia (Lewis et al., 2003). They identify salWkins in each study that
show evidence for high heterogeneity (different evidemdifikage across studies)
or low heterogeneity (consistent linkage evidence). Thiears acknowledge that the
distribution of the heterogeneity statistics may depenthersummed rank statistic
attained within the bin. They therefore test for heterogfgnender two scenarios:
where the observed heterogeneity statistic is comparedl gnsulated bins, and
where the observed heterogeneity statistic is only congpiarasimulated bins with
similar summed rank value<-@).

2.11 Limitations of the GSMA

Three classic sources of error in meta-analysis studidssted below and discussed
with their relevance to the GSMA.

2.11.1 File drawer problem

This error arises when unpublished studies are not includede meta-analysis,

as their existence is unknown to the investigators. Foraljgkstudies of candidate
regions, a publication bias exists as negative studieseaselikely to be published,
which will bias the results of the meta-analysis. For genavige studies this is

not a major concern: these studies are large, expensiveafaripe and publishable,

regardless of the significance of LOD scores obtained. Ngiesimypothesis is being
tested, so publication bias is not relevant.
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2.11.2 Garbage in, garbage out

Any meta-analysis is reliant on the quality of both the datd the results from the
individual studies. We assume that each study has a higlityqolphenotype and
genotype data, and that standard quality control checks haen performede(g.
testing for non-paternity, genotyping errors). The mostliemging problem in the
GSMA is ensuring a consistent bin definition, particularlgese studies have used
marker maps that differ in order or distance.

2.11.3 Apples and Oranges

Pooling data from many different studies is statisticalp@aling, but it is only of
value if a common effect is occurring across the studiesr& aee several sources of
heterogeneity that can limit the value of a meta-analysigenfetic linkage studies.
Potential sources of heterogeneity are population, fasalypling units (extended
pedigrees or affected sibling pairs), and clinical chamastics (diagnostic criteria,
age of diagnosis, severity of disease). Heterogeneityvioleace of linkage can be
tested using the methods of Zintzaras and loannidis (20@5b)ibset analysis can
also be performed to analyse a more homogeneous set ofstuidgehave little un-
derstanding of how the distribution of genetic variantstdbating to complex dis-
ease may be affected by these features, although the comniseasd, common vari-
ant (CDCV) hypothesis for complex diseases implies thatrertwould be present
across a wide range of study designs. Some GSMA studies leéweted linkage to
several genetic regions (schizophrenia, inflammatory bdigease), suggesting that
at least some common disease genes can be detected acerse diudies.

2.12 Disease studies using the GSMA

The GSMA has been applied in 14 studies of complex diseagesnarised in Ta-
ble 2.2 (Demenais et al., 2003; Wise et al., 1999; van Hed|,2@04; Lewis et al.,
2003; Segurado et al., 2003; Fisher et al., 2003, 2005; Bedtral., 2003; Marazita
et al., 2004; Chiodini and Lewis, 2003; Williams et al., 20®®@ivukoski et al.,
2004; Sagoo et al., 2004; Johnson et al., 2005). Most sthdies analysed qualita-
tive diseases, but quantitative traits (hypertensionybodss index) have also been
studied. The average number of linkage studies includedAdagange 4-20), and
the average number of families was 736 (range 257-1992g4d figures omit the
overlapping studies of inflammatory bowel disease, Crotissase and ulcerative
colitis). Of 14 studies, 8 were full collaborations, whilihers relied at least partially
on published information. All studies found at least onegasiive result (approxi-
matelyp < 0.01), and in 12 studies, at least one result of genome-widefgignice
was found. In the auto-immune diseases, genome-wide signde was found in the
HLA region on chromosome 6 (multiple sclerosis (Wise et 8999), rheumatoid
arthritis (Fisher et al., 2003), psoriasis (Sagoo et ab420inflammatory bowel dis-
ease (van Heel et al., 2004)), confirming findings of the agglinkage studies. In
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other studies, a region of genome-wide significance wasrebden chromosome
2 for schizophrenia (Lewis et al., 2003), which had not prasly been highlighted
as a strong candidate region for schizophrenia (O’'Donovah ,€2003). Similarly,
regions of genome-wide significance were detected on chsome 4 for psoria-
sis (Sagoo et al., 2004), on chromosome 3 for coronary hésaask (Chiodini and
Lewis, 2003), on chromosome 2 for cleft lip/palate (Marazt al., 2004), on chro-
mosome 3 for hypertension (Koivukoski et al., 2004) and orotosome 10 for
age-related macular degeneration (Fisher et al., 20053udoceptibility genes have
yet been localised in these regions for these diseased)dyuptovide strong candi-
date regions for follow-up linkage or association stud&snome-wide significance
is an extremely stringent criteria (occurring only once M&SMASs by chance), and
this is illustrated by the results for Crohn’s disease inrdggon of CARD15 on chro-
mosome 16. This region attainechavalue of 0.003 (weighted analysis) (van Heel
et al., 2004), despite the presence of this confirmed subdaptgene. Across the
diseases, there was no correlation between the number®Wiim nominal or sug-
gestive significance and the number of studies includedy @rd studies had used
the Ordered Ranks test to assess clustering of linkagesgelut the easy availability
of this method in the GSMA software package (Pardi et al. 528Bould make this
analysis more widely used.

These results show that the GSMA can play an important rofgimhesizing data
across genome-wide linkage studies and directing follpvgtudies. The number of
significant regions arising from GSMA studies has raisetiesiasm for the potential
utility of linkage studies, these studies suggest thatequistility genes for complex
diseases are detectable using linkage studies, providedaimple sizes are large
enough.

2.13 The Multiple Scan Probability method (MSP)

Badner and Gershon (2002b) developed a novel method of ametigsis of linkage
data, based on the maximum evidence for linkage obtainédnét genetic region.
This method is ‘region-wide’ rather than genome-wide, as ribgion for analysis
can be specific by investigators, and is usually triggeredrgylowp-value within a
study €.9.p < 0.01). For each study, the strongest evidence for linkage wRbitM

of the triggering-locus is noted, and thevalues combined, accounting for the length
of the region of the final analysis and the genotyping derdityriginal studies (see
Badner and Gershon (2002b) for full details). A replicataralysis excluding the
original linkage finding is also recommended.

This method has been applied to autism (Badner and GershB62b2, schizophre-
nia and bipolar disorder (Badner and Gershon, 2002a). lizgghrenia, significant
evidence for linkage was detected on chromosome 8p, 13q 2eqdThese regions
on chromosome 8p and 22q were also detected in the GSMA sfisthizophrenia
(Lewis et al., 2003), but the 139 region was absent. Linkad&t| and 22qg were also
found in bipolar disorder, neither of which was detectechimn GSMA study (Segu-
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rado et al., 2003), however for both schizophrenia and hipdisorder, the studies
included in the GSMA and the MSP differed substantially.

The major contrast between the GSMA and the MSP methodslieitest statistic.
The MSP uses a-value, and therefore retains the magnitude of the sigmifieaf
the original study. In contrast, the GSMA is a non-parameaink method, and the
maximum contribution from any study is the maximum numbésios (i.e. rank 120
in a study of 120 bins). The MSP should therefore have higbeepto detect regions
which have strong evidence for linkage in some studies, ithtyenetic heterogene-
ity present. Interestingly, the analysis of heterogenigithe schizophrenia GSMA
showed significant genetic heterogeneity on chromosomgaltligh may contribute
to the different GSMA and MSP meta-analysis results in thgian (Zintzaras and
loannidis, 2005b). The MSP would have lower power to detegions where link-
age evidence is moderate in all studies, as this would rggerithe investigation of
aregion.

2.14 Conclusions

Millions of dollars have been spent on linkage studies of plex genetic disor-

ders, but the results have been overwhelmingly disappajnth hindsight, many of
these studies are under-powered to detect linkage to geatesanfer only a modest
increase in risk for a complex disease. However, the utiityinkage studies has
been demonstrated by the localisation of a few geras CARD15 in inflamma-

tory bowel disease, NRGL1 in schizophrenia, CAPN10 in typ@&Petes) following

fine-mapping of regions detected in linkage analysis. Likatudies still have an
important role in localising disease genes: genotyping afhynlarge cohorts is in
progress, and linkage studies are still widely publisheétavanalysis of linkage
studies is therefore a timely approach. It provides a rapaiast-effective method
to ensure that maximum information is extracted from the yriarkage studies al-
ready performed. The regions highlighted in meta-analgtitnkage can be used
to prioritise future gene localisation studies, whethasthare based on fine-scale
linkage, on association studies of candidate genes, orlloafaip of whole genome
association studies.
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CHAPTER 3

Alternative Probeset Definitions for
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Affymetrix Oligonucleotide Arrays
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3.1 Introduction

Many published microarray studies have small to moderatekasizes, and thus
have low statistical power to detect significant relatiopstetween gene expression
levels and outcomes of interest. By pooling data acrossipfeltudies, however,
we can gain power, enabling us to detect new relationshipis. ffpe of pooling is
complicated by the fact that gene expression measurementslifferent microarray
platforms are not directly comparable.

In this chapter, we discuss two methods for combining infiom across differ-
ent versions of Affymetrix oligonucleotide arrays. Eachalves a new approach for
combining probes on the array into probesets. The first ggbrimvolves identifying
“matching probes” present on both chips, and then assegitiliam into new probe-
sets based on UniGene clusters. We demonstrate that tHiedgelds comparable
expression level quantifications across chips withoutifieiolg much precision or
significantly altering the relative ordering of the sampMg applied this method to
combine information across two lung cancer studies perorosing the HuGeneFL
and U95Av2 chips, revealing some genes related to patiewivall It appears that
the gain in statistical power from the pooling was key to tifging many of these
genes, since most were not found by equivalent analysesrpefl separately on the
two data sets. We have found that this approach is not feafsibcombining infor-
mation across the U95Av2 and U133A chips, which share fewdvgs in common.
Our second method defines probesets as sets of probes ngatehsame full-length
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MRNA transcripts in current genomic databases. We fouschtieithod yielded com-
parable expression levels across U95Av2 and U133A chipstygoed had better cor-
relation across chip types than Affymetrix’s matching preét definitions.

3.2 Combining Microarray Data across Studies and Platforms

In recent years, microarrays have been used extensivelghndaical research. This
is evident from the fact that there are over 9000 articlediplaéd since 2000 that in-
volve microarrays, with over 3000 published in 2004 alorigs¢iwww.ncbi.nim.nih.
gov/entrez/query.fcgi?db=PubMed). Generally, thesdistuinvolve the identifica-
tion of individual genes or sets of genes whose expressiofilgs are related to
clinical or biological factors of interest, including tisstype, disease status, disease
subtype, patient prognosis, and biological pathway, taliew. While microarrays
measure the expression levels for thousands of genes, dsofost limitations,
most studies are performed using only a small number of sssnpls a result, in-
dividual studies often have limited power for detectingwaint biological relation-
ships.

More recently, there has been a movement within the sciewctiinmunity to make
data from microarray studies publicly available. This muoeat has been propelled
by the establishment of standards for minimal informatmpitovide when posting
data (MIAME, (Brazma et al., 2001)) and the requirement ohynaajor journals
to make such data publicly available. There are currentlyraber of public reposito-
ries in which microarray data are posted, including Arragiess (http://www.ebi.ac.uk/arrayexpress/)
and Gene Expression Omnibus (GEO; http:// www.ncbi.nlmgov/geo/). This ex-
plosion of publicly-available data makes it possible tosidar meta-analyses that
combine information across multiple studies, which allave ¢o assess the reliabil-
ity of results reported in the individual studies and alsamteover new biological
insights not discovered in any individual study. If donegedy, this pooling of in-
formation across studies can provide increased power &ztghall consistent rela-
tionships that may have gone undetected in the individuallyaes, and can provide
results that are more likely to prove reproducible.

There is a small but growing number of studies in existingréiture that attempt to
combine information across multiple data sets. Genelthlye are three approaches
that are used: 1. Identify an intersection of genes thatigreficant across multiple
studies, 2. Validate results from a single individual studing data from other stud-
ies, or 3. Perform a single analysis after combining datasscmultiple studies. We
now briefly discuss the merits and drawbacks of each approach

The idea behind the first approach is that if a gene is trufigdiftially expressed,
then this differential expression should be manifest acrosltiple data sets. How-
ever, this Venn diagram-based approach often reveals &isighcsmall number of

genes that are found to be differentially expressed in plelilata sets. In a study
comparing normal and CLL B-cells, Wang et al. (2004) fourat imly 9 genes were
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found to be differentially expressed in all three studiesciated on three differ-
ent microarray platforms, out of 1172 that were differditiaxpressed in at least
one study. Similarly, in a study involving pancreatic cellan et al. (2003) found
only 4 genes differentially expressed across 3 differeatfptms, among the 185
deemed differentially expressed on at least one platformil@\perhaps identify-
ing the most reliably differentially expressed genes, #pproach actually results
in reduced sensitivity for detecting biological relatibips, since each (perhaps un-
derpowered) study must find the gene significant before iedaded so. Other less
conservative approaches focused on identifying geneathabnsistent across stud-
ies include methods discussed in Rhodes et al. (2002) andidRtet al. (2004), which
involve combiningp-values across studies, and the integrative correlatidhadeof
Parmigiani et al. (2004), which involves computing genegpairwise correlations
on the expression levels and/or tests statistics for eatikidtual study, then com-
puting a “correlation of correlations” across studies.sldpproach results in a list of
reproducible genes whose absolute or relative expressiafslare correlated across
studies and platforms. It does not, however, provide aittiti power for detecting
biological relationships.

A number of studies take the second approach, identifyintpbical relationships
using the data from a single study, then using data from catheties for valida-

tion of these relationships (Beer et al., 2002; Sgrlie ¢t28103; Stec et al., 2005;
Wright et al., 2003). Since the studies may differ with redpe their patient popu-
lations, microarray platforms, and sample handling andgssing, results surviving
this stringent form of validation are likely to be real. Hoxee, like the first approach,
this use of multiple data sets does not yield any additionalgy for detecting bio-

logical relationships since only a single data set is usélédrdiscovery process.

In the third approach, the data is actually combined acitosies and a single anal-
ysis is performed on the pooled data set. This is our prinragrést in this chapter.
The clear advantage of this approach is the possibility afeiased power for detect-
ing biological relationships, since the pooled data seigisificantly larger than any
of the individual data sets. The difficulty is that there amportant differences be-
tween the studies that must be taken into account beforpdssible to successfully
pool the data. The studies may differ with respect to theliepapopulations, sam-
ple handling, or sample preparations. These difference®eananifest in both the
clinical outcomes and the microarray data, and may affecgénes in a differential
manner. It has been shown that it is possible to obtain coap@microarray data
from different laboratories on a common platform if rigos@xperimental protocols
are established and followed across the different sitebifidcet al., 2005). However,
posted data from different studies were likely generaténpudifferent protocols, so
these factors come into play in the meta-analysis contéxsé problems are further
exacerbated if the studies are conducted on different micag platforms, which
have technical differences that make their gene expressimts fundamentally in-
comparable (Kuo et al., 2002; Tan et al., 2003; Mah et al. 4200arshall, 2004;
Mecham et al., 2004a).

Some of this heterogeneity can be handled by modeling stffigte for each gene
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using fixed or random effects in the context of mixed model8ayesian hierar-
chical models, standard approaches used in meta-anai@isand, 1999; Ghosh,
2004; Wang et al., 2004). These approaches appropriatetyuat for the study-
to-study variability when performing inference in the matzalysis, and provide a
simple first-order correction for each gene that aligns tkamexpression levels for
the different studies. Other approaches involve first-ocderections, but use meth-
ods that are more sophisticated mathematically. One isdb@sé¢he singular value
decomposition (Alter et al., 2000; Nielsen et al., 2002} anrmalizes the raw ex-
pression levels within studies using the first eigenvedimrshe genes and arrays.
This approach assumes that these eigenvectors represesttitly-to-study variabil-
ity, which is assumed to dominate all other factors. Anodpproach (Benito et al.,
2004) normalizes using a new method called “distance wedkliscrimination”
(DWD), which performs supervised discrimination to idéntinear combinations
of genes associated with the study effect, which is subsglyuemoved. However,
these approaches, when applied to the raw expression,ldeat®t appear to be suf-
ficient to make data comparable across different platfoFasone, they only adjust
the mean of the distributions for the two studies, but do nijast for higher order
distributional properties like the variances or quantilesa study comparing data
from spotted cDNA glass arrays and Affymetrix oligonucldetarrays, Kuo et al.
(2002) concluded that “data from spotted cDNA microarraysld not be directly
combined with data from synthesized oligonucleotide afagnd further, that it is
unlikely that the data could be normalized using a commandstedizing index.

For this reason, many studies do not attempt to combine thexaression profiles
across platforms, but instead only combine unitless supmaasures derived from
the raw data. The assumption is that, while the raw expressiels for the different
studies may not be comparable, these unitless statistizgddshe, since they are at
least on a common scale. For example, Wang et al. (2004) aoice€Cal. (2003) first
compute the standardized log fold changes between two iexpetal conditions,
then combine these across studies using hierarchical sd@iatilarly, Ghosh et al.
(2003) and Tan et al. (2003) first computstatistics comparing two experimental
conditions, then combine thesstatistics across studies. Shen et al. (2004) combine
the posterior probabilities of being over-expressed, thedpressed, or similarly ex-
pressed between two experimental conditions across dataléese approaches are
promising and all result in increased power to detect bicklgelationships in the
data, and can in principle be used across different plagoHowever, we believe it
would be inherently better to work with the raw expressiorels, if we could get
them to be comparable. In that case, we would not be limitéitttotomous compar-
isons, but could relate gene expression levels with anya§petcome é.g.survival

or time to progression). Also, these summary measures maikcit assumptions
about the comparability of the reference populations indifferent studies that, if
not true, may adversely affect inference. For example gusstatistics assumes that
the mean and standard deviation of the true gene expressigls khould be the same
across studies, and are only different because of techmeiaabns. By using the raw
expression levels, one could avoid making such assumptions
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Some studies have explicitly used sequence informationyttotobtain compara-
ble expression levels across platforms (Morris et al., 200&cham et al., 2004a;
Mah et al., 2004; Wu et al., 2005; Ji et al., 2005). This ideaatuiral, since much
of the systematic variability between expression level sneaments between (and
even within) platforms is attributable to sequence-reldtectors, such as cross-
hybridization, alternative splicing, inaccurate anniotabf gene sequences, and RNA
degradation. Cross-hybridization occurs when a gene tiigais to “near matches”
on the array, which can attenuate estimates of gene expnes3ertain sequences
are more likely to cross-hybridize (Zhang et al., 2003), soymesult in less reli-
able measurements of gene expression. Also, single genebenaanscribed into
multiple different mRNA variants. These alternativelyisptl variants may cause
some sequences corresponding to different exons from the gane to be discor-
dant. Additionally, not all probes on microarrays map to@ated sequences in pub-
lic databases. These probes tend to be less reliable (Meeham 2004b), which
may explain some of the lack of concordance across platidmesstudy involving
matched samples run on Affymetrix and nylon cDNA arrayst 3il.e(2005) showed
that the correlation of expression levels these platforras greater for sequences
with matches in the RefSeq database. Finally, RNA degradatan affect probes
differentially, since sequences closer to the endpointe®fjene may be more sus-
ceptible to this degradation than sequences near the mititdse factors are relevant
when comparing completely different technologies. spotted glass cDNA arrays
and Affymetrix oligonucleotide arrays, as well as when canipg different versions
of the same technologies.g.different versions of Affymetrix arrays or glass cDNA
arrays constructed using different clones. We believerttehods that explicitly take
into account these known biological and technologicaldectiltimately will result
in the most successful methods for combining informaticosg platforms.

3.3 Overview of Affymetrix Oligonucleotide Arrays

Generally speaking, there are two major types of microarapNA arrays and
oligonucleotide arrays. One key difference between theskriblogies is that on
cDNA arrays, genes are represented by a single cDNA cloniespon the array,
while on oligonucleotide arrays (Lockhart et al., 1996)ne® are represented by
“probes,” or short sequences of nucleotides from the taygee sequence. Affymetrix,
Inc. (Santa Clara, CA) is the largest producer of oligonotitie arrays, which they
call GeneChips. Affymetrix GeneChips contain multiple lpee for each gene. For
the remainder of this chapter, we focus our attention oni#trix oligonucelotide
arrays, which in practice are the most commonly used arcalesyt

The Affymetrix probes each consist of a sequence of 25 basesthe target gene,
which generally contains a total of several hundred or thoddase pairs. Since not
all sequences bind equally well, there is natural varigbbetween the expression
level measurements for different probes taken from the sgene. In order to av-
erage over some of this variability, each gene is repreddnte number of probes,
which together form a “probeset.” These probes are scdtt@eeoss the array. For
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each probe, there is also a corresponding “mismatch” prelbieh contains the iden-
tical sequence except with the‘tdase replaced by its Watson-Crick complement.
The mismatch probes are intended for normalization, athdhey have not been
shown to be clearly useful for that purpo$®. (

The probes are constructed based on sequence informatidaireed in GenBank
(http://www.psc.edu/general/software/packages/gekiganbank.html), a public
archive of DNA sequence information, UniGene (http://wwebi.nlm.nih.gov/entrez/
query.fcgi?db=unigene), which partitions these sequeimte non-redundant clus-
ters presumably corresponding to genes, and RefSeq (Wttpu/ncbi.nim.nih.gov/
RefSeq/), which is constructed by the NCBI to representtidie sf the art in terms of
the sequences of known genes. As this information has evoler time, Affymetrix
has produced different versions of its GeneChip. The masnconly used chip types
used in human studies include the HuGeneFL, the U95Av2, et 133A.

The HuGeneFL was introduced in November 1998, and its seguelusters are
based upon UniGene build 18. It contains information on hiyy§600 genes, and
each gene is represented by roughly 20 probe pairs. Thegpoobesponding to the
same probeset are placed together in the same region ofrttye Bhe U95Av2 was
introduced in April 2000, and is based upon UniGene buildiB&ontains informa-
tion on roughly 10,000 genes, each of which is representelblqyrobe pairs. The
probes are randomly distributed across the array. The UM&#first introduced
in January 2002, and is based upon UniGene build 133. It seniaformation on
14,500 genes, and contains 11 probes per gene. The protssarged on the array
in such a way as to optimize the probe synthesis efficiency.

Frequently, researchers wish to combine information aceaperiments conducted
using different versions of Affymetrix GeneChips. As newdies are conducted us-
ing more recent versions of the chips, researchers waritltos# information from
previous studies performed using older generations. Ademe researchers may
want to perform meta-analyses on data collected from melspudies performed
at different institutions. It is not easy to merge informatiacross chip types, since
there are some genes represented on newer chips that wene pravious ones, and
even the common genes are represented by different setslzégpon the different
chips, so their expression levels are not generally conpara

In the remainder of this chapter, we describe in detail twohods we have devel-
oped (Morris et al., 2005; Wu et al., 2005) to combine infotioraacross studies
using different Affymetrix chip types. These methods usgusace information to
define new probesets that yield comparable expressiorslaoebss different chip
types. Our hope is that the raw expression level values ubegg redefined probe-
sets are sufficiently comparable that they can be combimedsweersions. For each
method, we describe the method and use an example data semtnstrate the
concordance of expression levels across different arzgsty
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3.4 Partial Probesets

The incompatibility of expression levels across chip tyiseargely due to the fact
that different sets of probes are used to represent the sanas @n different chips.
We expect, however, that individual probes present on plalthips should yield
comparable expression levels across chips. Thus, one agpfor obtaining com-
parable expression levels across studies using two diffetep types is to only use
“matching probes” that are present on both chip types.

For example, suppose we have microarray data from two studige performed
on the HuGeneFL chip and the other on the U95Av2. The HuGeregftains a
total of roughly 130,000 probes partitioned into 6,633 mdis, each containing 20
probe pairs, while the U95Av2 contains a total of roughly 200 probes partitioned
into 12,625 probesets, each containing 16 probe pairs.eTéer a total of 34,428
“matching probes” that are present on both chip types.

After identifying these matching probes, we then recomiifhese into new probe-
sets based on the most current build of UniGene. We referesetimew probesets
as “partial probesets.” Note that because they are exXpllzitsed on UniGene clus-
ters, these probesets will not precisely correspond toméfyix-determined probe-
sets. Frequently, multiple Affymetrix probesets map to shene UniGene cluster.
We then eliminated any probesets containing just one or nebgs, since we ex-
pected the gene expression measurements based on so f@s fdie less reliable.
When performed based on UniGene build 160, this left us witld2 partial probe-
sets. In general, we expect these probesets to be smaltethth&ffymetrix-defined
probesets, since they only use the matching probes. Figliro8tains a plot of the
number of probes within each of these partial probesetst bdke probesets (84%)
contained 10 or fewer probes, and the median probeset skaavan. There were
several probesets containing more than 20 probes.

3.5 Example: CAMDA 2003 Lung Cancer Data

Two independent studies were performed at Harvard UniygiBhattacharjee et al.,
2001) and University of Michigan (Beer et al., 2002), botkusing on the same
guestion of relating gene expression data to survival iig lcencer patients. These
data were part of the 2003 critical assessment of microaatsyanalysis (CAMDA)
competition (http:/www.camda.duke.edu/camda2003)sélstudies both used Affymetrix
GeneChips, but the Michigan study used the HuGeneFL whéeHarvard study
used the U95Av2. Our goal in analyzing these data was to amnipiformation
across both data sets to identify prognostic genes, whqeession levels provided
prognostic information on patient survival over and abovaitns already provided
by known clinical factors. We used partial probesets to tjfiathhe gene expression
levels, and demonstrated that this resulted in comparaplession levels across the
two chip types, without any loss of precision from using oalsubset of the probes.
We identified a number of prognostic genes in our pooled aistiiat were not dis-
covered in the analyses performed on the individual stulighlighting the benefit
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Figure 3.1: Histogram of number of probes in each “partiabgset.”

of pooling data across studies. We first summarize thesesdétathen describe our
analyses to validate the partial probeset method and optagnostic genes. More
details of this analysis can be found in Morris et al. (2005).

3.5.1 Overview of Data Sets

The Harvard study analyzed 186 lung tumor samples using UB5¥fymetrix
GeneChips. From these, 125 were adenocarcinomas for wihiditat information
on the corresponding patients was available, includinglgerage, stage of disease,
and survival time. Applying hierarchical clustering to $kalata, Bhattacharjee et al.
(2001) identified four distinct subtypes of adenocarcinaevith different molecular
profiles, and further demonstrated that these subtypes iffadedt survival prog-
noses.

The Michigan study analyzed 86 lung adenocarcinoma sanysies) HuGeneFL
Affymetrix GeneChips. All of these samples also had comesling clinical infor-
mation, including gender, age, stage of disease, and slitiive. Using univariate
Cox regressions, they identified a number of genes whoseegsipn levels were
associated with patient survival. They subsequently cootgd a “risk index” using
the top 50 genes, and demonstrated that this risk indexdhehgelict patient survival
both in their own data and in independently obtained data famother experiment
(Bhattacharjee et al., 2001).

In our own analysis, we first performed various quality cohtthecks, after which
we removed 10 arrays from the Michigan study and one from tie&td study that
demonstrated poor quality. This left us with a total of 20gs, 124 from the Har-
vard study and 76 from the Michigan study. Using the partrabpset definitions
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described above, we quantified the gene expression leveksafth partial probe-
set using the Positional Dependent Nearest Neighbor (PDNdgel (Zhang et al.,

2003). Other quantification methods could have been usadyéichose this one
because we believe its use of probe sequence informatiomtticp patterns of spe-
cific and nonspecific hybridization intensities can lead tremreliable and accurate
guantifications.

We also performed other preprocessing steps. We removdththef the probesets
with the lowest mean expression levels across all samglen, iormalized the log
expression values by using a linear transformation to feemh chip to have a com-
mon mean and standard deviation across genes. We next réith@/erobesets with
the smallest variability across chips (standard deviatiof.20), since we consid-
ered them unlikely to be discriminatory and more likely todpeiriously flagged as
prognostic. Finally, we removed the probesets with poatred agreement (Spear-
man correlatior: 0.90) between the partial probeset and full probeset quaniificsit
(see next section). After this preprocessing, 1036 prabesmained and were con-
sidered in our subsequent analyses.

3.5.2 Validation of Partial Probesets

Before analyzing the microarray data to identify progrogéines, we assessed whether
our method for combining information across different Affgtrix chip types per-
formed acceptably. First, we checked whether the expnedsi@ls appeared to be
comparable across chip types. Specifically, we computednibdian and median
absolute deviation (MAD) log expression level for each iphgrobeset across the
Michigan samples run on the HuGeneFL chip and also for thedtdrsamples run
on the U95Av2 chip. Since the patient populations in the ttualies appeared to
reasonably similar, we expected to see high concordanbesetquantities between
the two chips if the expression levels were comparable. \Wadi, however, expect
perfect concordance, since different patients were ustiteitwo studies. Figure 3.2
contains a plot of these quantities, and demonstrates gmuzbedance between the
center and spread in the distribution of gene expressiaresain the two chips. The
concordance between these values was 0.961 for the medi&nh&20 for the MAD,
so it appears that using the partial probeset method yielelesbnably comparable
expression levels across the two chips.

Recall that partial probesets use only the matching prokleite completely ignor-
ing expression level information for the non-matching @®brhis means that partial
probesets are generally smaller than the Affymetrix-defimmbesets. The median
size of our partial probesets was seven, while the Affymetgfined probesets for
the HuGeneFL and U95Av2 chips have 20 and 16 probes, regplgctsince ad-
ditional probes can increase the precision in measuringtipeession level of the
corresponding gene, one might expect a loss of precisiomwiseng the partial
probesets to quantify expression levels. To investigasepbssibility, we quantified
the expression levels for the full probesets of the Harvardpes using the PDNN



40 ALTERNATIVE AFFYMETRIX PROBESET DEFINITIONS
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Figure 3.2: Median (a) and median absolute deviation (b)esgion levels for
each partial probeset based on the Harvard samples run dd9&v?2 chips vs.
the Michigan samples run on the HuGeneFL chip. The high calzcze in these
measures suggests we obtain reasonably comparable éspresels by using the
matched probes.

model. The full probesets consisted of all probes on theyarapping to the Uni-
Gene cluster, i.e., not just the matching ones. We plottedstandard deviation for
each gene using the full probeset versus the standard ideviat the partial probe-
set, given in Figure 3.3. If the partial probeset quantiftceg were considerably less
precise, we would expect measurement error to cause thaasthdeviation to be
larger for the partial probesets. There was no evidencegoifgant precision loss
in this plot, as there is strong agreement between the sthmkdwiations for each
gene using the two methods (concordance=0.942). This neswy sarprising at first,
but upon further thought is reasonable, since we expectliegpbrobes Affymetrix
retained in formulating the new chips may in some sense bé#st” ones.

We computed Spearman correlations between the partialdimtdbeset quantifica-

tions for each probeset to confirm that our method presehedeative ordering of

the samples, i.e., the ranks. For example, we expected gaahple with the largest
expression level for a given gene using the full set of pratifslso demonstrate the
largest expression level for that gene when using only thieimea probes. The me-
dian Spearman correlation across all probesets was 0.§8esting that our method
did a good job of preserving the relative ordering of the daspgnterestingly, but not

surprisingly, most of the lower Spearman correlations ofcuprobesets with less
heterogeneous expression levels across samples anddespte containing smaller
numbers of probes. It appears that our partial probesetadetbrked quite well.
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Standard Deviation of Full
vs. Partial Probesets, Harvard Data
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Figure 3.3: Standard deviation across Harvard samplesafdr gene based on full
and partial probesets. A “full probeset” contains all pr@ba the U95Av2 chip map-
ping to a unique UniGene ID, while the corresponding “papiabeset.”

3.5.3 Pooling Across Studies to Identify Prognostic Genes

We pooled the data across these two studies to identify psigrgenes offering pre-
dictive information on patient survival. We were not priiihamterested in finding
genes that were simply surrogates for known clinical pretjndactors like stage,
since these factors are easily available without collgctiticroarray data. Rather,
we were interested in finding genes that explained the \ilitjaim patient survival
that remained after modeling the clinical predictors. Thws fit multivariable sur-
vival models, including clinical covariates in all survivaodels we used to identify
prognostic genes.

We screened the 1036 genes to find potentially prognostis byditting a series
of multivariable Cox models containing age, stage (dichoted as low, stages I-
II, and high, stages IlI-1V), institution, and the log-e®gsion of one of the genes
as predictors. The institution effect was included in thedeido account for differ-
ences in survival that were evident between the two stuelies) after accounting for
known clinical covariates. We obtained the exaefalues for each gene’s coefficient
using a permutation approach. In this approach, we firstrgée 100,000 datasets
by randomly permuting the gene expression values acrogasamhile keeping the
clinical covariates fixed. We subsequently obtained thenpéattionp-value for each
gene by counting the proportion of fitted Cox coefficientd thare more extreme
than the coefficient for the true dataset. A smallalue for a given gene indicated
potential for that gene to provide prognostic informatiorsarvival beyond the clin-
ical covariates. We also obtaingdvalues using asymptotic likelihood ratio tests
(LRT) and the bootstrap to assess robustness of our results.
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If there were no prognostic genes, statistical theory sstgghat a histogram of these
p-values should follow a uniform distribution. An overabamde of smalp-values
would indicate the presence of prognostic genes. We fit a-Battborm mixture
model to this histogram gf-values using a method called the Beta-Uniform Mix-
ture method (BUM, Pounds and Morris, 2003), which partsitime histogram into
two components, a Beta component containing the progngsties and Uniform
component containing the non-significant ones. We usedribidel to identify ap-
value cutoff that controlled the false discovery rate (F{B&njamini and Hochberg,
2000)) to be no more than 0.20. This means that of the genegeflaas prognostic,
we expect at most 1 in 5 were false positives.

Permutation Test
for Prognostic Genes

Frequency
40 60 80 100 120
L L L L I}

20
I

r T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

p-value

Figure 3.4: Histogram gf-values from permutation test on gene coefficient in Cox
model containing clinical covariates and each one of the2®didate genes. The
corresponding histogram for the LRT is nearly identical.

Figure 3.4 contains the histogram of permutation tegalues. The overabundance
of very smallp-values indicates the presence of some genes providingniakion

on patient prognosis beyond what is offered by the modeli@ital factors. Table

3.1 contains a set of 26 genes that are flagged by the BUM mesind FDR< 0.20,
which are those genes withvalues less than 0.0025. Many of these genes appear to
be biologically interesting and worthy of future considea. We were able to link

10 of our 26 prognostic genes to lung cancer based on therexlgerature. Four
others could be linked to cancer in general or other lungadisen the literature.
These genes are discussed in more detail in Morris et al5j200

None of the genes we identified appeared in the list of top Ed@gfrom the Michi-

gan analysis (Beer et al., 2002), and we only found one (CR&t)was mentioned
in the Harvard paper (Bhattacharjee et al., 2001). CPE wa®bthe genes defining
a neuroendocrine cluster that they identified and assalcaite poor prognosis. We
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Table 3.1: Set of genes flagged as prognostic by applying BdMhe permuta-
tion p-values withF DR < 0.20. Also included are the LRT and bootstraqvalues
and estimates of the Cox model coefficient. A **’ indicates thvalue was below
the BUM significance threshold. The identity of the genedse given. A negative
coefficient indicates that larger expression levels of geate correspond to a better
survival outcome.

Gene ldentity Coef Prognosticvalues
Permut. LRT  Bootstrap

FCGRT -2.07 < 0.00001* 0.00014* 0.0006*
ENO2 1.46 0.00001*  0.00002* < 0.0001*
NFRKB -2.81 0.00001*  0.00435  0.00404*
RRM1 1.81 0.00002*  0.00008* < 0.0001*
TBCE -2.35 0.00004*  0.00069* 0.0006*
Phosph. mutase 1 1.92 0.00008* 0.00020* 0.0004*
ATIC 1.81 0.00009*  0.00153* 0.0004*
CHKL -1.43 0.00010*  0.02305 0.0260
DDX3 -2.37 0.00017*  0.00012* 0.0002*
OST -1.64 0.00020*  0.00010* 0.0010*
CPE 0.72  0.00031* 0.00053* 0.0010*
ADRBK1 -2.20 0.00044*  0.00678 0.0030*
BCL9 -1.64 0.00067*  0.03602 0.0460
BZwW1 1.33 0.00068*  0.00279* 0.0006*
TPS1 -0.64  0.00106* 0.00217* < 0.0001*
CLU -0.52 0.00109*  0.00239* 0.0024*
OGDH -2.19 0.00118*  0.00405 0.0020*
STK25 2.29 0.00122*  0.00152* 0.0080
KCC2 -1.70 0.00143*  0.00988 0.0220
SEPW1 -1.29  0.00145*  0.01026 0.0160
FSCN1 0.66  0.00150* 0.00241* 0.0103
MRPL19 1.12 0.00211*  0.03213 0.0340
ALDH9 -1.18 0.00223*  0.00378* 0.0020*
PFN2 0.63  0.00248* 0.00351* 0.0020*

BTG2 -0.75 0.00232*  0.00580 0.0140
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repeated our analysis separately for the Harvard and Machitata sets,e. without
pooling, and only eight and one of the 26 genes, respectiwelse flagged as having
p-values less than 0.0025, while 17 are not flagged, inclutiagop gene in our list
(FCGRT). Thus, it appears that our pooled analysis revesdbiological insights
contained in these data that were not identified when amajythiem separately.

3.6 Full-Length Transcript Based Probesets

The analyses presented in the previous section suggebtthaing partial probesets,
we were able to obtain comparable expression levels actodges conducted at
different institutions using different chip types (HuG&heand U95Av2), allowing
us to perform a pooled analysis that revealed new biologisajhts into lung cancer.
Unfortunately, this approach is not feasible when comlgniriormation across the
U95Av2 and U133A chips, since these chips share fewer prisbesmmon than
the HuGeneFL and U95Av2. There are 34,428 probes (14%) od3b&v2 that are
also present on the HuGeneFL, while there are only 11,58293r(6%) that are also
present on the U133A. If we form partial probesets and elat@those with less than
3 probes, we are left with only 628 probesets. Thus, we hapkeed less stringent
alternative approaches to use for combining informationssthese chip types.

One of the primary reasons probes yield discordant measumsns that they may
be responding to different transcripts alternativelycgaifrom the same gene. When
the transcripts are differentially regulated, the coroesfing probes can yield con-
flicting signals. The current design of arrays ignores tliect$ of alternative splic-
ing. Thus, if we differentiate the probes that match setdtefratively spliced tran-
scripts, we may be able to resolve the discordant measutseniased on this idea,
we developed a new method to regroup the probes into prabdsetur new def-
inition of a probeset, all probes in the probeset must matehsame set of full-
length gene sequences. We refer to such a probeset as a #agth Transcript
Based Probeset” (FLTBP, (Wu et al., 2005)). Assuming cotepteclusion of alter-
natively spliced transcripts, we can in principle ensurecoomdant behavior of the
probes within these probesets.

We now describe how we obtained these transcript-basedpetd First, we con-
structed a comprehensive library of full-length mRNA tremst sequences in the hu-
man genome by combining records in RefSeq (http://www.néfi.nih.gov/RefSeq/)
and HinvDB (http:// hinvdb.ddbj.nig.ac.jp/index.jsp)tdbases. As of January 2005,
RefSeq (build 111504, human section) contained 28,71Adnljth transcript se-
guences representing 23,809 genes. H-InvDB (version hijamed 41,118 se-
guences representing 21,037 genes. All of the sequencbisiddtabase were val-
idated by full-length cDNA clones. We estimate that coilegly the two databases
represent approximately 29,000 genes with 50,000 nonnaathit transcripts.

We used this library as the basis for defining our probesets&ch probe sequence
used on the U133A and U95Av2 arrays, we identified all magfiti-length tran-
scripts using the Blast program (http://www.ncbi.nlm.gibv/blast/). We aggregated
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the IDs of those transcripts with exact matches to cons&rucatched target list. We
found that 15% of the probes on the U95Av2 and 13% of the prohdhe U133A
had no exact match in our library, and 38% of the probes on &3l and 33% of
the probes on the U95Av2 matched more than two targets inlmary, demonstrat-
ing that it was very common for one probe to match multiplgéss.

By grouping the probes within the same matched target liformed 23,972 and
14,148 probesets on the U133A and U95Av2, respectively. dlldleese probesets
“Full-Length Transcript Based Probesets” (FLTBPs). Basamultiple probes in a
probeset are essential to reduce noise and bias, we didcalidemall probesets
containing less than 3 probes, leaving us with 18,011 and2B1FLTBPs on the
U133A and U95Av2, respectively. Collectively, these FLEB#®ntained 82% of the
probes on the arrays.

These new probesets were very different from the originaso®nly 9,893 of the
original probesets on U133A and 5,257 original probeset$JB8BAv2 were the
same after regrouping. Figure 3.5 shows a histogram of tinebeu of probes in
each FLTBP. The probesets outside of the major peaks refid@stoth and fusion
of the original probesets. Detailed information of our preéts are stored on our
web site (http://odin.mdacc.tmc.edwhangli/FLTBP). This website also contains
chip design files (CDF) using FLTBPs following the formatidegd by Affymetrix
(http://lwww. affymetrix.com/index.affx). These CDF filean be used to run MAS5,
RMA and dChip algorithms in BioConductor (http://www.b@@uctor.org/).

10000
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1000 - —o— HG-U133A
c
é 100 -
10
T
3 9 15 21 27 33
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Figure 3.5: Histogram of number of probes per FLTBP.

By matching the matched target lists of FLTBPs on the twoyasrave found 9,642
pairs of FLTBPs that can be mapped between the U133A and URSXfymetrix

has their own method for mapping probesets between diffehdmtypes (http://www.
affymetrix.com/Auth/support/downloads/comparisorsfionatch.zip), which yields
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9,480 pairs of probesets between the U95Av2 and U133A chipere are numerous
differences between these Affy-defined mappings and ouBPIST Only 52% of the

probe sets on the U133A and 48% of the probesets on the U95&udapped the

same way as our FLTBPs.

3.7 Example: Lung Cell Line Data

To compare our mapping method with that of Affymetrix, we disedata set con-
sisting of 28 paired measurements obtained by hybridizlagtical samples on both
the U133A and U95Av2 arrays. Because of this paired desigrexpect very little
biological variability between paired measurements ontif arrays, so any dif-
ferences observed should be attributable to technicatesuwWe now describe this
dataset and use it to demonstrate that the FLTBPs resultantifjigations that are
more comparable across chip types than Affymetrix- basedgsets.

3.7.1 Overview of Data Set

Thirty RNA samples from variant lung cancer or normal lund imes and one
human reference sample were hybridized on both U133A and\UBarrays. Our
quality control procedures revealed that three array irndogel obvious defects, so
were discarded. This left us with 28 pairs of samples that seslun this study.

We preprocessed and quantified the gene expressions withNREizang et al. 2003)
using the PerfectMatch software (ver2.2) (http://odinacatmc.edutzhangli/ Per-
fectMatch). For comparison, we also preprocessed andifjedribe data using other
competing methods, RMA (Irizarry et al., 2003), MAS5 (hiwww. affymetrix.com/
products/software/specific/mas.affx) and dChip (Li andng/o2001), using Bio-
Conductor (v1.5, http://www.bioconductor.org/), follmg the default settings in the
af f y package (Irizarry et al., 2004).

3.7.2 Validation of Transcript-Based Probesets

In order to assess comparability across chip types, for gank, we computed the
correlations between the paired U95Av2 and U133A measurs@eross samples.
To enhance the contrast between two different mapping rdsttio our comparisons
we focused on the probesets that differed between the twhadet Approximately

1/3 of the probesets were mapped differently, which reduie3,309 and 3,527

paired probesets for FLTBP method and Affymetrix methodpestively.

Figure 3.6 contains a histogram of these correlations aquosbesets for the two
mapping methods and four quantification methods. Thesedrmins summarize the
observed distribution of the paired correlations acrosbgsets. Figure 3.6A clearly
demonstrates that, when using the PDNN quantification ndetthe FLTBP map-

ping tends to yield better correlations than the Affymetriapping < 0.00001,
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Figure 3.6: Distribution of gene-to-gene correlation begw probesets on two
U95Av2 and U133A arrays, combining information over all gd@s, using both
Affymetrix-defined probesets and FLTBPs. The correlatimese computed using
four different quantification methods, (A) PDNN, (B) RMA, Y®AS5.0, and (D)

dChip.

Kolmogorov-Smirnov [KS] test). Notice the two peaks evitlanthe distribution
of correlations for the Affymetrix mapping. The minor peaktains a large group
of probesets with poor correlation across chip types. Witleoquantification meth-
ods, there is also evidence that the FLTBP method tendsut nedetter correlation
across chip types than the Affymetrix method, althoughéekidence is not as strong
(Figures 3.6B-Dp = 0.00031, 0.00575, and0.00005 respectively). This improve-
ment from using the FLTBPs is likely due to the fact that th& BR adjusts for some
of the heterogeneity that is due to alternative splicing.

Note also that, when compared with Figure 3.6A, the distidims in Figure 3.6B-
D are shifted more toward low correlations. This suggests, flor these data, the
PDNN quantification tended to yield generally higher catieins than the RMA,
MASS, or dChip quantifications. This is even more evidenhia sample-by-sample
correlations between the chip types computed across gansbhown in Figure 3.7.
This increased correlation observed from the PDNN methoyd matkect the man-
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Figure 3.7: Distribution of sample-to-sample correlatimiween probesets on two
U95Av2 and U133A arrays, combining information over all ggnusing both

Affymetrix-defined probesets and FLTBPs. The correlatimese computed using
four different quantification methods, PDNN, RMA, MAS5.GdadChip, respec-

tively.

ner in which the PDNN model estimates and adjusts for theesffef non-specific
binding.

From Figure 6A, we see that even when using the FLTBPs, nagiealés displayed
high correlations across chip types. Many of these low ¢aticsms were observed
for genes that appeared to have low biological variabilityhese data. Low vari-
ability would make the noise component of the measurememtsrehte, resulting in

low correlations. There are, however, some probesets withcbrrelations that do
not have small variances. It is possible that some of theesemgs corresponding to
these probesets were strongly affected by RNA degradatiotie currently avail-

able collection of transcripts may not include certainraléively spliced variants
that were differentially expressed across the sample, temtsing the correlations to
become attenuated. Further work needs to be done to fuederce the effects of
cross-hybridization and RNA degradation, which will hagsf lead to even more

comparable expression levels across platforms.

3.8 Summary

In this chapter, we have illustrated the benefit of poolintgadecross multiple mi-

croarray studies. We performed a pooled analysis over twg tancer microarray
studies, and identified new prognostic genes that were et by separate anal-
yses performed on the individual data sets. We also destrienew probeset def-
initions that result in more comparable expression levetess different versions
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of Affymetrix oligonucleotide chips. The first method is ledson partial probesets,
which only use probes present on both chip types and comhéme together based
on UniGene cluster information. This approach works verit,\bait has limited ap-
plicability, since it is only feasible to apply across chypés that share many probes
in common. The second method does not restrict us solely tohimg probes, but
works by recombining probes based on the set of full-leng®N# transcripts to
which they map. In this way, the probesets map to the samefsatesnatively
spliced transcripts. Combined with the PDNN quantificatimethod which accounts
for non-specific binding, this approach appears to resuttane comparable expres-
sion levels across chip types than Affymetrix’s matchedopsets. The benefit of
this approach is that it does not restrict attention to medgirobes, so can be widely
applied to combine data across any chip types. It may everossilpe to use this
principle to match up oligonucleotide array data with cDNatal although this re-
mains to be seen.
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