
BIBTEXing

Oren Patashnik

February 8, 1988

1 Overview

[This document will be expanded when BibTEX version 1.00 comes out. Please
report typos, omissions, inaccuracies, and especially unclear explanations to me
(patashnik@SCORE.STANFORD.EDU). Suggestions for improvements are wanted
and welcome.]

This documentation, for BibTEX version 0.99b, is meant for general BibTEX
users; bibliography-style designers should read this document and then read
“Designing BibTEX Styles” [3], which is meant for just them.

This document has three parts: Section 2 describes the differences between
versions 0.98i and 0.99b of BibTEX and between the corresponding versions of
the standard styles; Section 3 updates Appendix B.2 of the LATEX book [2]; and
Section 4 gives some general and specific tips that aren’t documented elsewhere.
It’s assumed throughout that you’re familiar with the relevant sections of the
LATEX book.

This documentation also serves as sample input to help BibTEX implemen-
tors get it running. For most documents, this one included, you produce the
reference list by: running LATEX on the document (to produce the aux file(s)),
then running BibTEX (to produce the bbl file), then LATEX twice more (first
to find the information in the bbl file and then to get the forward references
correct). In very rare circumstances you may need an extra BibTEX/LATEX run.

BibTEX version 0.99b should be used with LATEX version 2.09, for which
the closed bibliography format is the default; to get the open format, use the
optional document style openbib (in an open format there’s a line break be-
tween major blocks of a reference-list entry; in a closed format the blocks run
together).]

Note: BibTEX 0.99b is not compatible with the old style files; nor is BibTEX
0.98i compatible with the new ones (the new BibTEX, however, is compatible
with old database files).

Note for implementors: BibTEX provides logical-area names TEXINPUTS: for
bibliography-style files and TEXBIB: for database files it can’t otherwise find.

1

2 Changes

This section describes the differences between BibTEX versions 0.98i and 0.99b,
and also between the corresponding standard styles. There were a lot of differ-
ences; there will be a lot fewer between 0.99 and 1.00.

2.1 New BibTEX features

The following list explains BibTEX’s new features and how to use them.

1. With the single command ‘\nocite{*}’ you can now include in the ref-
erence list every entry in the database files, without having to explicitly
\cite or \nocite each entry. Giving this command, in essence, \nocites
all the enties in the database, in database order, at the very spot in your
document where you give the command.

2. You can now have as a field value (or an @STRING definition) the concate-
nation of several strings. For example if you’ve defined

@STRING(WGA = " World Gnus Almanac")

then it’s easy to produce nearly-identical title fields for different entries:

@BOOK(almanac-66,
title = 1966 # WGA,
. . .

@BOOK(almanac-67,
title = 1967 # WGA,

and so on. Or, you could have a field like

month = "1~" # jan,

which would come out something like ‘1~January’ or ‘1~Jan.’ in the bbl
file, depending on how your bibliography style defines the jan abbrevia-
tion. You may concatenate as many strings as you like (except that there’s
a limit to the overall length of the resulting field); just be sure to put the
concatenation character ‘#’, surrounded by optional spaces or newlines,
between each successive pair of strings.

3. BibTEX has a new cross-referencing feature, explained by an example.
Suppose you say \cite{no-gnats} in your document, and suppose you
have these two entries in your database file:

2

@INPROCEEDINGS(no-gnats,
crossref = "gg-proceedings",
author = "Rocky Gneisser",
title = "No Gnats Are Taken for Granite",
pages = "133-139")

. . .
@PROCEEDINGS(gg-proceedings,
editor = "Gerald Ford and Jimmy Carter",
title = "The Gnats and Gnus 1988 Proceedings",
booktitle = "The Gnats and Gnus 1988 Proceedings")

Two things happen. First, the special crossref field tells BibTEX that
the no-gnats entry should inherit any fields it’s missing from the entry
it cross references, gg-proceedings. In this case it in inherits the two
fields editor and booktitle. Note that, in the standard styles at least,
the booktitle field is irrelevant for the PROCEEDINGS entry type. The
booktitle field appears here in the gg-proceedings entry only so that
the entries that cross reference it may inherit the field. No matter how
many papers from this meeting exist in the database, this booktitle field
need only appear once.

The second thing that happens: BibTEX automatically puts the entry
gg-proceedings into the reference list if it’s cross referenced by two
or more entries that you \cite or \nocite, even if you don’t \cite or
\nocite the gg-proceedings entry itself. So gg-proceedings will auto-
matically appear on the reference list if one other entry besides no-gnats
cross references it.

To guarantee that this scheme works, however, a cross-referenced entry
must occur later in the database files than every entry that cross-references
it. Thus, putting all cross-referenced entries at the end makes sense.
(Moreover, you may not reliably nest cross references; that is, a cross-
referenced entry may not itself reliably cross reference an entry. This is
almost certainly not something you’d want to do, though.)

One final note: This cross-referencing feature is completely unrelated to
the old BibTEX’s cross referencing, which is still allowed. Thus, having a
field like

note = "Jones \cite{jones-proof} improves the result"

is not affected by the new feature.

4. BibTEX now handles accented characters. For example if you have an
entry with the two fields

3

author = "Kurt G{\"o}del",
year = 1931,

and if you’re using the alpha bibliography style, then BibTEX will con-
struct the label [Göd31] for this entry, which is what you’d want. To get
this feature to work you must place the entire accented character in braces;
in this case either {\"o} or {\"{o}} will do. Furthermore these braces
must not themselves be enclosed in braces (other than the ones that might
delimit the entire field or the entire entry); and there must be a backslash
as the very first character inside the braces. Thus neither {G{\"{o}}del}
nor {G\"{o}del} will work for this example.

This feature handles all the accented characters and all but the nonback-
slashed foreign symbols found in Tables 3.1 and 3.2 of the LATEX book.
This feature behaves similarly for “accents” you might define; we’ll see an
example shortly. For the purposes of counting letters in labels, BibTEX
considers everything contained inside the braces as a single letter.

5. BibTEX also handles hyphenated names. For example if you have an entry
with

author = "Jean-Paul Sartre",

and if you’re using the abbrv style, then the result is ‘J.-P. Sartre’.

6. There’s now an @PREAMBLE command for the database files. This com-
mand’s syntax is just like @STRING’s, except that there is no name or
equals-sign, just the string. Here’s an example:

@PREAMBLE{ "\newcommand{\noopsort}[1]{} "
"\newcommand{\singleletter}[1]{#1} " }

(note the use of concatenation here, too). The standard styles output
whatever information you give this command (LATEX macros most likely)
directly to the bbl file. We’ll look at one possible use of this command,
based on the \noopsort command just defined.

The issue here is sorting (alphabetizing). BibTEX does a pretty good job,
but occasionally weird circumstances conspire to confuse BibTEX: Suppose
that you have entries in your database for the two books in a two-volume
set by the same author, and that you’d like volume 1 to appear just before
volume 2 in your reference list. Further suppose that there’s now a second
edition of volume 1, which came out in 1973, say, but that there’s still
just one edition of volume 2, which came out in 1971. Since the plain
standard style sorts by author and then year, it will place volume 2 first
(because its edition came out two years earlier) unless you help BibTEX.
You can do this by using the year fields below for the two volumes:

4

year = "{\noopsort{a}}1973"
. . .
year = "{\noopsort{b}}1971"

According to the definition of \noopsort, LATEX will print nothing but
the true year for these fields. But BibTEX will be perfectly happy pre-
tending that \noopsort specifies some fancy accent that’s supposed to
adorn the ‘a’ and the ‘b’; thus when BibTEX sorts it will pretend that
‘a1973’ and ‘b1971’ are the real years, and since ‘a’ comes before ‘b’, it
will place volume 1 before volume 2, just what you wanted. By the way,
if this author has any other works included in your database, you’d prob-
ably want to use instead something like {\noopsort{1968a}}1973 and
{\noopsort{1968b}}1971, so that these two books would come out in a
reasonable spot relative to the author’s other works (this assumes that
1968 results in a reasonable spot, say because that’s when the first edition
of volume 1 appeared).

There is a limit to the number of @PREAMBLE commands you may use, but
you’ll never exceed this limit if you restrict yourself to one per database file;
this is not a serious restriction, given the concatenation feature (item 2).

7. BibTEX’s sorting algorithm is now stable. This means that if two entries
have identical sort keys, those two entries will appear in citation order.
(The bibliography styles construct these sort keys—usually the author
information followed by the year and the title.)

8. BibTEX no longer does case conversion for file names; this will make
BibTEX easier to install on Unix systems, for example.

9. It’s now easier to add code for processing a command-line aux-file name.

2.2 Changes to the standard styles

This section describes changes to the standard styles (plain, unsrt, alpha,
abbrv) that affect ordinary users. Changes that affect style designers appear in
the document “Designing BibTEX Styles” [3].

1. In general, sorting is now by “author”, then year, then title—the old ver-
sions didn’t use the year field. (The alpha style, however, sorts first by
label, then “author”, year, and title.) The quotes around author mean
that some entry types might use something besides the author, like the
editor or organization.

2. Many unnecessary ties (~) have been removed. LATEX thus will produce
slightly fewer ‘Underfull \hbox’ messages when it’s formatting the refer-
ence list.

5

3. Emphasizing ({\em ...}) has replaced italicizing ({\it ...}). This will
almost never result in a difference between the old output and the new.

4. The alpha style now uses a superscripted ‘+’ instead of a ‘*’ to rep-
resent names omitted in constructing the label. If you really liked it
the way it was, however, or if you want to omit the character entirely,
you don’t have to modify the style file—you can override the ‘+’ by re-
defining the \etalchar command that the alpha style writes onto the
bbl file (just preceding the \thebibliography environment); use LATEX’s
\renewcommand inside a database @PREAMBLE command, described in the
previous subsection’s item 6.

5. The abbrv style now uses ‘Mar.’ and ‘Sept.’ for those months rather than
‘March’ and ‘Sep.’

6. The standard styles use BibTEX’s new cross-referencing feature by giving
a \cite of the cross-referenced entry and by omitting from the cross-
referencing entry (most of the) information that appears in the cross-
referenced entry. These styles do this when a titled thing (the cross-
referencing entry) is part of a larger titled thing (the cross-referenced
entry). There are five such situations: when (1) an INPROCEEDINGS (or
CONFERENCE, which is the same) cross references a PROCEEDINGS; when
(2) a BOOK, (3) an INBOOK, or (4) an INCOLLECTION cross references a
BOOK (in these cases, the cross-referencing entry is a single volume in a
multi-volumework); and when (5) an ARTICLE cross references an ARTICLE
(in this case, the cross-referenced entry is really a journal, but there’s no
JOURNAL entry type; this will result in warning messages about an empty
author and title for the journal—you should just ignore these warnings).

7. The MASTERSTHESIS and PHDTHESIS entry types now take an optional type
field. For example you can get the standard styles to call your reference a
‘Ph.D. dissertation’ instead of the default ‘PhD thesis’ by including a

type = "{Ph.D.} dissertation"

in your database entry.

8. Similarly, the INBOOK and INCOLLECTION entry types now take an optional
type field, allowing ‘section 1.2’ instead of the default ‘chapter 1.2’. You
get this by putting

chapter = "1.2",
type = "Section"

in your database entry.

6

9. The BOOKLET, MASTERSTHESIS, and TECHREPORT entry types now format
their title fields as if they were ARTICLE titles rather than BOOK titles.

10. The PROCEEDINGS and INPROCEEDINGS entry types now use the address
field to tell where a conference was held, rather than to give the address
of the publisher or organization. If you want to include the publisher’s or
organization’s address, put it in the publisher or organization field.

11. The BOOK, INBOOK, INCOLLECTION, and PROCEEDINGS entry types now al-
low either volume or number (but not both), rather than just volume.

12. The INCOLLECTION entry type now allows a series and an edition field.

13. The INPROCEEDINGS and PROCEEDINGS entry types now allow either a
volume or number, and also a series field.

14. The UNPUBLISHED entry type now outputs, in one block, the note field
followed by the date information.

15. The MANUAL entry type now prints out the organization in the first block
if the author field is empty.

16. The MISC entry type now issues a warning if all the optional fields are
empty (that is, if the entire entry is empty).

3 The Entries

This section is simply a corrected version of Appendix B.2 of the LATEX book [2],
c© 1986, by Addison-Wesley. The basic scheme is the same, only a few details
have changed.

3.1 Entry Types

When entering a reference in the database, the first thing to decide is what
type of entry it is. No fixed classification scheme can be complete, but BibTEX
provides enough entry types to handle almost any reference reasonably well.

References to different types of publications contain different information;
a reference to a journal article might include the volume and number of the
journal, which is usually not meaningful for a book. Therefore, database entries
of different types have different fields. For each entry type, the fields are divided
into three classes:

required Omitting the field will produce a warning message and, rarely, a
badly formatted bibliography entry. If the required information is not
meaningful, you are using the wrong entry type. However, if the required
information is meaningful but, say, already included is some other field,
simply ignore the warning.

7

optional The field’s information will be used if present, but can be omitted
without causing any formatting problems. You should include the optional
field if it will help the reader.

ignored The field is ignored. BibTEX ignores any field that is not required or
optional, so you can include any fields you want in a bib file entry. It’s a
good idea to put all relevant information about a reference in its bib file
entry—even information that may never appear in the bibliography. For
example, if you want to keep an abstract of a paper in a computer file, put
it in an abstract field in the paper’s bib file entry. The bib file is likely
to be as good a place as any for the abstract, and it is possible to design a
bibliography style for printing selected abstracts. Note: Misspelling a field
name will result in its being ignored, so watch out for typos (especially
for optional fields, since BibTEX won’t warn you when those are missing).

The following are the standard entry types, along with their required and
optional fields, that are used by the standard bibliography styles. The fields
within each class (required or optional) are listed in order of occurrence in the
output, except that a few entry types may perturb the order slightly, depending
on what fields are missing. These entry types are similar to those adapted
by Brian Reid from the classification scheme of van Leunen [4] for use in the
Scribe system. The meanings of the individual fields are explained in the next
section. Some nonstandard bibliography styles may ignore some optional fields
in creating the reference. Remember that, when used in the bib file, the entry-
type name is preceded by an @ character.

article An article from a journal or magazine. Required fields: author, title,
journal, year. Optional fields: volume, number, pages, month, note.

book A book with an explicit publisher. Required fields: author or editor,
title, publisher, year. Optional fields: volume or number, series,
address, edition, month, note.

booklet A work that is printed and bound, but without a named publisher or
sponsoring institution. Required field: title. Optional fields: author,
howpublished, address, month, year, note.

conference The same as INPROCEEDINGS, included for Scribe compatibility.

inbook A part of a book, which may be a chapter (or section or whatever)
and/or a range of pages. Required fields: author or editor, title,
chapter and/or pages, publisher, year. Optional fields: volume or
number, series, type, address, edition, month, note.

incollection A part of a book having its own title. Required fields: author,
title, booktitle, publisher, year. Optional fields: editor, volume or
number, series, type, chapter, pages, address, edition, month, note.

8

inproceedings An article in a conference proceedings. Required fields:
author, title, booktitle, year. Optional fields: editor, volume or
number, series, pages, address, month, organization, publisher,
note.

manual Technical documentation. Required field: title. Optional fields:
author, organization, address, edition, month, year, note.

mastersthesis A Master’s thesis. Required fields: author, title, school,
year. Optional fields: type, address, month, note.

misc Use this type when nothing else fits. Required fields: none. Optional
fields: author, title, howpublished, month, year, note.

phdthesis A PhD thesis. Required fields: author, title, school, year. Op-
tional fields: type, address, month, note.

proceedings The proceedings of a conference. Required fields: title, year.
Optional fields: editor, volume or number, series, address, month,
organization, publisher, note.

techreport A report published by a school or other institution, usually num-
bered within a series. Required fields: author, title, institution, year.
Optional fields: type, number, address, month, note.

unpublished A document having an author and title, but not formally pub-
lished. Required fields: author, title, note. Optional fields: month,
year.

In addition to the fields listed above, each entry type also has an optional key
field, used in some styles for alphabetizing, for cross referencing, or for forming
a \bibitem label. You should include a key field for any entry whose “author”
information is missing; the “author” information is usually the author field,
but for some entry types it can be the editor or even the organization field
(Section 4 describes this in more detail). Do not confuse the key field with the
key that appears in the \cite command and at the beginning of the database
entry; this field is named “key” only for compatibility with Scribe.

3.2 Fields

Below is a description of all fields recognized by the standard bibliography styles.
An entry can also contain other fields, which are ignored by those styles.

address Usually the address of the publisher or other type of institution. For
major publishing houses, van Leunen recommends omitting the informa-
tion entirely. For small publishers, on the other hand, you can help the
reader by giving the complete address.

9

annote An annotation. It is not used by the standard bibliography styles, but
may be used by others that produce an annotated bibliography.

author The name(s) of the author(s), in the format described in the LATEX
book.

booktitle Title of a book, part of which is being cited. See the LATEX book for
how to type titles. For book entries, use the title field instead.

chapter A chapter (or section or whatever) number.

crossref The database key of the entry being cross referenced.

edition The edition of a book—for example, “Second”. This should be an
ordinal, and should have the first letter capitalized, as shown here; the
standard styles convert to lower case when necessary.

editor Name(s) of editor(s), typed as indicated in the LATEX book. If there is
also an author field, then the editor field gives the editor of the book or
collection in which the reference appears.

howpublished How something strange has been published. The first word
should be capitalized.

institution The sponsoring institution of a technical report.

journal A journal name. Abbreviations are provided for many journals; see
the Local Guide.

key Used for alphabetizing, cross referencing, and creating a label when the
“author” information (described in Section 4) is missing. This field should
not be confused with the key that appears in the \cite command and at
the beginning of the database entry.

month The month in which the work was published or, for an unpublished
work, in which it was written. You should use the standard three-letter
abbreviation, as described in Appendix B.1.3 of the LATEX book.

note Any additional information that can help the reader. The first word
should be capitalized.

number The number of a journal, magazine, technical report, or of a work in a
series. An issue of a journal or magazine is usually identified by its volume
and number; the organization that issues a technical report usually gives
it a number; and sometimes books are given numbers in a named series.

organization The organization that sponsors a conference or that publishes a
manual.

10

pages One or more page numbers or range of numbers, such as 42--111 or
7,41,73--97 or 43+ (the ‘+’ in this last example indicates pages following
that don’t form a simple range). To make it easier to maintain Scribe-
compatible databases, the standard styles convert a single dash (as in
7-33) to the double dash used in TEX to denote number ranges (as in
7--33).

publisher The publisher’s name.

school The name of the school where a thesis was written.

series The name of a series or set of books. When citing an entire book, the
the title field gives its title and an optional series field gives the name
of a series or multi-volume set in which the book is published.

title The work’s title, typed as explained in the LATEX book.

type The type of a technical report—for example, “Research Note”.

volume The volume of a journal or multivolume book.

year The year of publication or, for an unpublished work, the year it was writ-
ten. Generally it should consist of four numerals, such as 1984, although
the standard styles can handle any year whose last four nonpunctuation
characters are numerals, such as ‘(about 1984)’.

4 Helpful Hints

This section gives some random tips that aren’t documented elsewhere, at least
not in this detail. They are, roughly, in order of least esoteric to most. First,
however, a brief spiel.

I understand that there’s often little choice in choosing a bibliography style—
journal X says you must use style Y and that’s that. If you have a choice,
however, I strongly recommend that you choose something like the plain stan-
dard style. Such a style, van Leunen [4] argues convincingly, encourages better
writing than the alternatives—more concrete, more vivid.

The Chicago Manual of Style [1], on the other hand, espouse the author-
date system, in which the citation might appear in the text as ‘(Jones, 1986)’.
I argue that this system, besides cluttering up the text with information that
may or may not be relevant, encourages the passive voice and vague writing.
Furthermore the strongest arguments for using the author-date system—like
“it’s the most practical”—fall flat on their face with the advent of computer-
typesetting technology. For instance the Chicago Manual contains, right in
the middle of page 401, this anachronism: “The chief disadvantage of [a style
like plain] is that additions or deletions cannot be made after the manuscript

11

is typed without changing numbers in both text references and list.” LATEX,
obviously, sidesteps the disadvantage.

Finally, the logical deficiencies of the author-date style are quite evident once
you’ve written a program to implement it. For example, in a large bibliography,
using the standard alphabetizing scheme, the entry for ‘(Aho et al., 1983b)’
might be half a page later than the one for ‘(Aho et al., 1983a)’. Fixing this
problem results in even worse ones. What a mess. (I have, unfortunately,
programmed such a style, and if you’re saddled with an unenlightened publisher
or if you don’t buy my propaganda, it’s available from the Rochester style
collection.)

Ok, so the spiel wasn’t very brief; but it made me feel better, and now my
blood pressure is back to normal. Here are the tips for using BibTEX with the
standard styles (although many of them hold for nonstandard styles, too).

1. With BibTEX’s style-designing language you can program general database
manipulations, in addition to bibliography styles. For example it’s a fairly
easy task for someone familiar with the language to produce a database-
key/author index of all the entries in a database. Consult the Local Guide
to see what tools are available on your system.

2. The standard style’s thirteen entry types do reasonably well at formatting
most entries, but no scheme with just thirteen formats can do everything
perfectly. Thus, you should feel free to be creative in how you use these
entry types (but if you have to be too creative, there’s a good chance
you’re using the wrong entry type).

3. Don’t take the field names too seriously. Sometimes, for instance, you
might have to include the publisher’s address along with the publisher’s
name in the publisher field, rather than putting it in the address field.
Or sometimes, difficult entries work best when you make judicious use of
the note field.

4. Don’t take the warning messages too seriously. Sometimes, for instance,
the year appears in the title, as in The 1966 World Gnus Almanac. In
this case it’s best to omit the year field and to ignore BibTEX’s warning
message.

5. If you have too many names to list in an author or editor field, you can
end the list with “and others”; the standard styles appropriately append
an “et al.”

6. In general, if you want to keep BibTEX from changing something to lower
case, you enclose it in braces. You might not get the effect you want,
however, if the very first character after the left brace is a backslash. The
“special characters” item later in this section explains.

12

7. For Scribe compatibility, the database files allow an @COMMENT command;
it’s not really needed because BibTEX allows in the database files any
comment that’s not within an entry. If you want to comment out an
entry, simply remove the ‘@’ character preceding the entry type.

8. The standard styles have journal abbreviations that are computer-science
oriented; these are in the style files primarily for the example. If you
have a different set of journal abbreviations, it’s sensible to put them in
@STRING commands in their own database file and to list this database file
as an argument to LATEX’s \bibliography command (but you should list
this argument before the ones that specify real database entries).

9. It’s best to use the three-letter abbreviations for the month, rather than
spelling out the month yourself. This lets the bibliography style be con-
sistent. And if you want to include information for the day of the month,
the month field is usually the best place. For example

month = jul # "~4,"

will probably produce just what you want.

10. If you’re using the unsrt style (references are listed in order of citation)
along with the \nocite{*} feature (all entries in the database are in-
cluded), the placement of the \nocite{*} command within your docu-
ment file will determine the reference order. According to the rule given
in Section 2.1: If the command is placed at the beginning of the document,
the entries will be listed in exactly the order they occur in the database;
if it’s placed at the end, the entries that you explicitly \cite or \nocite
will occur in citation order, and the remaining database entries will be in
database order.

11. For theses, van Leunen recommends not giving the school’s department
after the name of the degree, since schools, not departments, issue degrees.
If you really think that giving the department information will help the
reader find the thesis, put that information in the address field.

12. The MASTERSTHESIS and PHDTHESIS entry types are so named for Scribe
compatibility; MINORTHESIS and MAJORTHESIS probably would have been
better names. Keep this in mind when trying to classify a non-U.S. thesis.

13. Here’s yet another suggestion for what to do when an author’s name ap-
pears slightly differently in two publications. Suppose, for example, two
journals articles use these fields.

author = "Donald E. Knuth"
. . .
author = "D. E. Knuth"

13

There are two possibilities. You could (1) simply leave them as is, or (2) as-
suming you know for sure that these authors are one and the same person,
you could list both in the form that the author prefers (say, ‘Donald E.
Knuth’). In the first case, the entries might be alphabetized incorrectly,
and in the second, the slightly altered name might foul up somebody’s
electronic library search. But there’s a third possibility, which is the one
I prefer. You could convert the second journal’s field to

author = "D[onald] E. Knuth"

This avoids the pitfalls of the previous two solutions, since BibTEX alpha-
betizes this as if the brackets weren’t there, and since the brackets clue the
reader in that a full first name was missing from the original. Of course
it introduces another pitfall—‘D[onald] E. Knuth’ looks ugly—but in this
case I think the increase in accuracy outweighs the loss in aesthetics.

14. LATEX’s comment character ‘%’ is not a comment character in the database
files.

15. Here’s a more complete description of the “author” information referred
to in previous sections. For most entry types the “author” information is
simply the author field. However: For the BOOK and INBOOK entry types
it’s the author field, but if there’s no author then it’s the editor field;
for the MANUAL entry type it’s the author field, but if there’s no author
then it’s the organization field; and for the PROCEEDINGS entry type it’s
the editor field, but if there’s no editor then it’s the organization field.

16. When creating a label, the alpha style uses the “author” information de-
scribed above, but with a slight change—for the MANUAL and PROCEEDINGS
entry types, the key field takes precedence over the organization field.
Here’s a situation where this is useful.

organization = "The Association for Computing Machinery",
key = "ACM"

Without the key field, the alpha style would make a label from the first
three letters of information in the organization field; alpha knows to
strip off the ‘The ’, but it would still form a label like ‘[Ass86]’, which,
however intriguing, is uninformative. Including the key field, as above,
would yield the better label ‘[ACM86]’.

You won’t always need the key field to override the organization, though:
With

organization = "Unilogic, Ltd.",

14

for instance, the alpha style would form the perfectly reasonable label
‘[Uni86]’.

17. Section 2.1 discusses accented characters. To BibTEX, an accented char-
acter is really a special case of a “special character”, which consists of
everything from a left brace at the top-most level, immediately followed
by a backslash, up through the matching right brace. For example in the
field

author = "\AA{ke} {Jos{\’{e}} {\’{E}douard} G{\"o}del"

there are just two special characters, ‘{\’{E}douard}’ and ‘{\"o}’ (the
same would be true if the pair of double quotes delimiting the field were
braces instead). In general, BibTEX will not do any processing of a TEX
or LATEX control sequence inside a special character, but it will process
other characters. Thus a style that converts all titles to lower case would
convert

The {\TeX BOOK\NOOP} Experience

to

The {\TeX book\NOOP} experience

(the ‘The’ is still capitalized because it’s the first word of the title).

This special-character scheme is useful for handling accented characters,
for getting BibTEX’s alphabetizing to do what you want, and, since BibTEX
counts an entire special character as just one letter, for stuffing extra
characters inside labels. The file XAMPL.BIB distributed with BibTEX gives
examples of all three uses.

18. This final item of the section describes BibTEX’s names (which appear in
the author or editor field) in slightly more detail than what appears in
Appendix B of the LATEX book. In what follows, a “name” corresponds to
a person. (Recall that you separate multiple names in a single field with
the word “and”, surrounded by spaces, and not enclosed in braces. This
item concerns itself with the structure of a single name.)

Each name consists of four parts: First, von, Last, and Jr; each part
consists of a (possibly empty) list of name-tokens. The Last part will be
nonempty if any part is, so if there’s just one token, it’s always a Last
token.

Recall that Per Brinch Hansen’s name should be typed

"Brinch Hansen, Per"

15

The First part of his name has the single token “Per”; the Last part has
two tokens, “Brinch” and “Hansen”; and the von and Jr parts are empty.
If you had typed

"Per Brinch Hansen"

instead, BibTEX would (erroneously) think “Brinch” were a First-part
token, just as “Paul” is a First-part token in “John Paul Jones”, so this
erroneous form would have two First tokens and one Last token.

Here’s another example:

"Charles Louis Xavier Joseph de la Vall{\’e}e Poussin"

This name has four tokens in the First part, two in the von, and two in
the Last. Here BibTEX knows where one part ends and the other begins
because the tokens in the von part begin with lower-case letters.

In general, it’s a von token if the first letter at brace-level 0 is in lower
case. Since technically everything in a “special character” is at brace-
level 0, you can trick BibTEX into thinking that a token is or is not a von
token by prepending a dummy special character whose first letter past the
TEX control sequence is in the desired case, upper or lower.

To summarize, BibTEX allows three possible forms for the name:

"First von Last"
"von Last, First"
"von Last, Jr, First"

You may almost always use the first form; you shouldn’t if either there’s
a Jr part, or the Last part has multiple tokens but there’s no von part.

References

[1] The Chicago Manual of Style, pages 400–401. University of Chicago Press,
thirteenth edition, 1982.

[2] Leslie Lamport. LATEX: A Document Preparation System. Addison-Wesley,
1986.

[3] Oren Patashnik. Designing BibTEX styles. The part of BibTEX’s documen-
tation that’s not meant for general users, 8 February 1988.

[4] Mary-Claire van Leunen. A Handbook for Scholars. Knopf, 1979.

16

Designing BIBTEX Styles

Oren Patashnik

February 8, 1988

5 Bibliography-style hacking

This document starts (and ends) with Section 5, because in reality it is the
final section of “BibTEXing” [4], the general documentation for BibTEX. But
that document was meant for all BibTEX users, while this one is just for style
designers, so the two are physically separate. Still, you should be completely
familiar with “BibTEXing”, and all references in this document to sections and
section numbers assume that the two documents are one.

This section, along with the standard-style documentation file btxbst.doc,
should explain how to modify existing style files and to produce new ones. If
you’re a serious style hacker you should be familiar with van Leunen [7] for
points of style, with Lamport [3] and Knuth [2] for formatting matters, and
perhaps with Scribe [6] for compatibility details. And while you’re at it, if you
don’t read the great little book by Strunk and White [5], you should at least
look at its entries in the database and the reference list to see how BibTEX
handles multiple names.

To create a new style, it’s best to start with an existing style that’s close
to yours, and then modify that. This is true even if you’re simply updating an
old style for BibTEX version 0.99 (I’ve updated four nonstandard styles, so I say
this with some experience). If you want to insert into a new style some function
you’d written for an old (version 0.98i) style, keep in mind that the order of
the arguments to the assignment (:=) function has been reversed. When you’re
finished with your style, you may want to try running it on the entire XAMPL.BIB
database to make sure it handles all the standard entry types.

If you find any bugs in the standard styles, or if there are things you’d like to
do with bibliography-style files but can’t, please complain to Oren Patashnik.

1

5.1 General description

You write bibliography styles in a postfix stack language. It’s not too hard
to figure out how by looking at the standard-style documentation, but this
description fills in a few details (it will fill in more details if there’s a demand
for it).

Basically the style file is a program, written in an unnamed language, that
tells BibTEX how to format the entries that will go in the reference list (hence-
forth “the entries” will be “the entry list” or simply “the list”, context permit-
ting). This programming language has ten commands, described in the next
subsection. These commands manipulate the language’s objects: constants,
variables, functions, the stack, and the entry list. (Warning: The terminology
in this documentation, chosen for ease of explanation, is slightly different from
BibTEX’s. For example, this documentation’s “variables” and “functions” are
both “functions” to BibTEX. Keep this in mind when interpreting BibTEX’s error
messages.)

There are two types of functions: built-in ones that BibTEX provides (these
are described in Section 5.3), and ones you define using either the MACRO or
FUNCTION command.

Your most time-consuming task, as a style designer, will be creating or
modifying functions using the FUNCTION command (actually, becoming familiar
with the references listed above will be more time consuming, but assume for
the moment that that’s done).

Let’s look at a sample function fragment. Suppose you have a string variable
named label and an integer variable named lab.width, and suppose you want
to append the character ‘a’ to label and to increment lab.width:

. . .
label "a" * ’label := % label := label * "a"
lab.width #1 + ’lab.width := % lab.width := lab.width + 1
. . .

In the first line, label pushes that variable’s value onto the stack. Next, the
"a" pushes the string constant ‘a’ onto the stack. Then the built-in function *
pops the top two strings and pushes their concatenation. The ’label pushes
that variable’s name onto the stack. And finally, the built-in function := pops
the variable name and the concatenation and performs the assignment. BibTEX
treats the stuff following the % as a comment in the style file. The second line
is similar except that it uses #1, with no spaces intervening between the ‘#’ and
the ‘1’, to push this integer constant.

The nonnull spacing here is arbitrary: multiple spaces, tabs, or newlines are
equivalent to a single one (except that you’re probably better off not having
blank lines within commands, as explained shortly).

For string constants, absolutely any printing character is legal between two
consecutive double quotes, but BibTEX here (and only here) treats upper- and

2

lower-case equivalents as different. Furthermore, spacing is relevant within a
string constant, and you mustn’t split a string constant across lines (that is, the
beginning and ending double quotes must be on the same line).

Variable and function names may not begin with a numeral and may not
contain any of the ten restricted characters on page 143 of the LATEX book, but
may otherwise contain any printing characters. Also, BibTEX considers upper-
and lower-case equivalents to be the same.

Integers and strings are the only value types for constants and variables
(booleans are implemented simply as 0-or-1 integers). There are three kinds of
variables:

global variables These are either integer- or string-valued, declared using an
INTEGERS or STRINGS command.

entry variables These are either integer- or string-valued, declared using the
ENTRY command. Each has a value for each entry on the list (example: a
variable label might store the label string you’ll use for the entry).

fields These are string-valued, read-only variables that store the information
from the database file; their values are set by the READ command. As with
entry variables, each has a value for each entry.

5.2 Commands

There are ten style-file commands: Five (ENTRY, FUNCTION, INTEGERS, MACRO,
and STRINGS) declare and define variables and functions; one (READ) reads in
the database information; and four (EXECUTE, ITERATE, REVERSE, and SORT)
manipulate the entries and produce output. Although the command names
appear here in upper case, BibTEX ignores case differences.

Some restrictions: There must be exactly one ENTRY and one READ command;
the ENTRY command, all MACRO commands, and certain FUNCTION commands (see
next subsection’s description of call.type$) must precede the READ command;
and the READ command must precede the four that manipulate the entries and
produce output.

Also it’s best (but not essential) to leave at least one blank line between
commands and to leave no blank lines within a command; this helps BibTEX
recover from any syntax errors you make.

You must enclose each argument of every command in braces. Look at the
standard-style documentation for syntactic issues not described in this section.
Here are the ten commands:

ENTRY Declares the fields and entry variables. It has three arguments, each a
(possibly empty) list of variable names. The three lists are of: fields, inte-
ger entry variables, and string entry variables. There is an additional field
that BibTEX automatically declares, crossref, used for cross referencing.

3

And there is an additional string entry variable automatically declared,
sort.key$, used by the SORT command. Each of these variables has a
value for each entry on the list.

EXECUTE Executes a single function. It has one argument, the function name.

FUNCTION Defines a new function. It has two arguments; the first is the func-
tion’s name and the second is its definition. You must define a function
before using it; recursive functions are thus illegal.

INTEGERS Declares global integer variables. It has one argument, a list of
variable names. There are two such automatically-declared variables,
entry.max$ and global.max$, used for limiting the lengths of string vari-
ables. You may have any number of these commands, but a variable’s
declaration must precede its use.

ITERATE Executes a single function, once for each entry in the list, in the list’s
current order (initially the list is in citation order, but the SORT command
may change this). It has one argument, the function name.

MACRO Defines a string macro. It has two arguments; the first is the macro’s
name, which is treated like any other variable or function name, and the
second is its definition, which must be double-quote-delimited. You must
have one for each three-letter month abbreviation; in addition, you should
have one for common journal names. The user’s database may override any
definition you define using this command. If you want to define a string
the user can’t touch, use the FUNCTION command, which has a compatible
syntax.

READ Dredges up from the database file the field values for each entry in the
list. It has no arguments. If a database entry doesn’t have a value for a
field (and probably no database entry will have a value for every field),
that field variable is marked as missing for the entry.

REVERSE Exactly the same as the ITERATE command except that it executes
the function on the entry list in reverse order.

SORT Sorts the entry list using the values of the string entry variable sort.key$.
It has no arguments.

STRINGS Declares global string variables. It has one argument, a list of variable
names. You may have any number of these commands, but a variable’s
declaration must precede its use.

4

5.3 The built-in functions

Before we get to the built-in functions, a few words about some other built-
in objects. There is one built-in string entry variable, sort.key$, which the
style program must set if the style is to do sorting. There is one built-in field,
crossref, used for the cross referencing feature described in Section 4. And
there are two built-in integer global variables, entry.max$ and global.max$,
which are set by default to some internal BibTEX constants; you should truncate
strings to these lengths before you assign to string variables, so as to not generate
any BibTEX warning messages.

There are currently 37 built-in functions. Every built-in function with a
letter in its name ends with a ‘$’. In what follows, “first”, “second”, and so
on refer to the order popped. A “literal” is an element on the stack, and it
will be either an integer value, a string value, a variable or function name, or
a special value denoting a missing field. If any popped literal has an incorrect
type, BibTEX complains and pushes the integer 0 or the null string, depending
on whether the function was supposed to push an integer or string.

> Pops the top two (integer) literals, compares them, and pushes the integer 1
if the second is greater than the first, 0 otherwise.

< Analogous.

= Pops the top two (both integer or both string) literals, compares them, and
pushes the integer 1 if they’re equal, 0 otherwise.

+ Pops the top two (integer) literals and pushes their sum.

- Pops the top two (integer) literals and pushes their difference (the first sub-
tracted from the second).

* Pops the top two (string) literals, concatenates them (in reverse order, that
is, the order in which pushed), and pushes the resulting string.

:= Pops the top two literals and assigns to the first (which must be a global or
entry variable) the value of the second.

add.period$ Pops the top (string) literal, adds a ‘.’ to it if the last non‘}’
character isn’t a ‘.’, ‘?’, or ‘!’, and pushes this resulting string.

call.type$ Executes the function whose name is the entry type of an en-
try. For example if an entry is of type book, this function executes the
book function. When given as an argument to the ITERATE command,
call.type$ actually produces the output for the entries. For an entry
with an unknown type, it executes the function default.type. Thus you
should define (before the READ command) one function for each standard
entry type as well as a default.type function.

5

change.case$ Pops the top two (string) literals; it changes the case of the
second according to the specifications of the first, as follows. (Note: The
word ‘letters’ in the next sentence refers only to those at brace-level 0,
the top-most brace level; no other characters are changed, except perhaps
for “special characters”, described in Section 4.) If the first literal is the
string ‘t’, it converts to lower case all letters except the very first character
in the string, which it leaves alone, and except the first character following
any colon and then nonnull white space, which it also leaves alone; if it’s
the string ‘l’, it converts all letters to lower case; and if it’s the string ‘u’,
it converts all letters to upper case. It then pushes this resulting string. If
either type is incorrect, it complains and pushes the null string; however,
if both types are correct but the specification string (i.e., the first string)
isn’t one of the legal ones, it merely pushes the second back onto the
stack, after complaining. (Another note: It ignores case differences in the
specification string; for example, the strings t and T are equivalent for the
purposes of this built-in function.)

chr.to.int$ Pops the top (string) literal, makes sure it’s a single character,
converts it to the corresponding ASCII integer, and pushes this integer.

cite$ Pushes the string that was the \cite-command argument for this entry.

duplicate$ Pops the top literal from the stack and pushes two copies of it.

empty$ Pops the top literal and pushes the integer 1 if it’s a missing field or a
string having no non-white-space characters, 0 otherwise.

format.name$ Pops the top three literals (they are a string, an integer, and a
string literal). The last string literal represents a name list (each name
corresponding to a person), the integer literal specifies which name to
pick from this list, and the first string literal specifies how to format this
name, as explained in the next subsection. Finally, this function pushes
the formatted name.

if$ Pops the top three literals (they are two function literals and an integer
literal, in that order); if the integer is greater than 0, it executes the second
literal, else it executes the first.

int.to.chr$ Pops the top (integer) literal, interpreted as the ASCII inte-
ger value of a single character, converts it to the corresponding single-
character string, and pushes this string.

int.to.str$ Pops the top (integer) literal, converts it to its (unique) string
equivalent, and pushes this string.

missing$ Pops the top literal and pushes the integer 1 if it’s a missing field,
0 otherwise.

6

newline$ Writes onto the bbl file what’s accumulated in the output buffer. It
writes a blank line if and only if the output buffer is empty. Since write$
does reasonable line breaking, you should use this function only when you
want a blank line or an explicit line break.

num.names$ Pops the top (string) literal and pushes the number of names the
string represents—one plus the number of occurrences of the substring
“and” (ignoring case differences) surrounded by nonnull white-space at
the top brace level.

pop$ Pops the top of the stack but doesn’t print it; this gets rid of an unwanted
stack literal.

preamble$ Pushes onto the stack the concatenation of all the @PREAMBLE strings
read from the database files.

purify$ Pops the top (string) literal, removes nonalphanumeric characters ex-
cept for white-space characters and hyphens and ties (these all get con-
verted to a space), removes certain alphabetic characters contained in the
control sequences associated with a “special character”, and pushes the
resulting string.

quote$ Pushes the string consisting of the double-quote character.

skip$ Is a no-op.

stack$ Pops and prints the whole stack; it’s meant to be used for style designers
while debugging.

substring$ Pops the top three literals (they are the two integers literals len
and start, and a string literal, in that order). It pushes the substring of
the (at most) len consecutive characters starting at the startth character
(assuming 1-based indexing) if start is positive, and ending at the −startth
character from the end if start is negative (where the first character from
the end is the last character).

swap$ Swaps the top two literals on the stack.

text.length$ Pops the top (string) literal, and pushes the number of text char-
acters it contains, where an accented character (more precisely, a “special
character”, defined in Section 4) counts as a single text character, even if
it’s missing its matching right brace, and where braces don’t count as text
characters.

text.prefix$ Pops the top two literals (the integer literal len and a string lit-
eral, in that order). It pushes the substring of the (at most) len consecutive
text characters starting from the beginning of the string. This function
is similar to substring$, but this one considers a “special character”,

7

even if it’s missing its matching right brace, to be a single text character
(rather than however many ASCII characters it actually comprises), and
this function doesn’t consider braces to be text characters; furthermore,
this function appends any needed matching right braces.

top$ Pops and prints the top of the stack on the terminal and log file. It’s
useful for debugging.

type$ Pushes the current entry’s type (book, article, etc.), but pushes the null
string if the type is either unknown or undefined.

warning$ Pops the top (string) literal and prints it following a warning message.
This also increments a count of the number of warning messages issued.

while$ Pops the top two (function) literals, and keeps executing the second
as long as the (integer) literal left on the stack by executing the first is
greater than 0.

width$ Pops the top (string) literal and pushes the integer that represents its
width in some relative units (currently, hundredths of a point, as specified
by the June 1987 version of the cmr10 font; the only white-space character
with nonzero width is the space). This function takes the literal literally;
that is, it assumes each character in the string is to be printed as is,
regardless of whether the character has a special meaning to TEX, except
that “special characters” (even without their right braces) are handled
specially. This is meant to be used for comparing widths of label strings.

write$ Pops the top (string) literal and writes it on the output buffer (which
will result in stuff being written onto the bbl file when the buffer fills up).

Note that the built-in functions while$ and if$ require two function literals
on the stack. You get them there either by immediately preceding the name of
a function by a single quote, or, if you don’t feel like defining a new function
with the FUNCTION command, by simply giving its definition (that is, giving
what would be the second argument to the FUNCTION command, including the
surrounding braces). For example the following function fragment appends the
character ‘a’ if the string variable named label is nonnull:

. . .
label "" =
’skip$
{ label "a" * ’label := }

if$
. . .

A function whose name you quote needn’t be built in like skip$ above—it may,
for example, be a field name or a function you’ve defined earlier.

8

5.4 Name formatting

What’s in a name? Section 4 pretty much describes this. Each name consists of
four parts: First, von, Last, and Jr; each consists of a list of name-tokens, and
any list but Last’s may be empty for a nonnull name. This subsection describes
the format string you must supply to the built-in function format.name$.

Let’s look at an example of a very long name. Suppose a database entry [1]
has the field

author = "Charles Louis Xavier Joseph de la Vall{\’e}e Poussin"

and suppose you want this formatted “last name comma initials”. If you use the
format string

"{vv~}{ll}{, jj}{, f}?"

BibTEX will produce

de~la Vall{\’e}e~Poussin, C.~L. X.~J?

as the formatted string.
Let’s look at this example in detail. There are four brace-level 1 pieces to

this format string, one for each part of a name. If the corresponding part of
a name isn’t present (the Jr part for this name), everything in that piece is
ignored. Anything at brace-level 0 is output verbatim (the presumed typo ‘?’
for this name is at brace-level 0), but you probably won’t use this feature much.

Within each piece a double letter tells BibTEX to use whole tokens, and a
single letter, to abbreviate them (these letters must be at brace-level 1); every-
thing else within the piece is used verbatim (well, almost everything—read on).
The tie at the end of the von part (in {vv~}) is a discretionary tie—BibTEX
will output a tie at that point if it thinks there’s a need for one; otherwise it
will output a space. If you really, really, want a tie there, regardless of what
BibTEX thinks, use two of them (only one will be output); that is, use {vv~~}.
A tie is discretionary only if it’s the last character of the piece; anywhere else
it’s treated as an ordinary character.

BibTEX puts default strings between tokens of a name part: For whole tokens
it uses either a space or a tie, depending on which one it thinks is best, and for
abbreviated tokens it uses a period followed by either a space or a tie. However
it doesn’t use this default string after the last token in a list; hence there’s no
period following the ‘J’ for our example. You should have used

"{vv~}{ll}{, jj}{, f.}"

to get BibTEX to produce the same formatted string but with the question mark
replaced by a period. Note that the period should go inside the First-name piece,
rather than where the question mark was, in case a name has no First part.

If you want to override BibTEX’s default between-token strings, you must
explicitly specify a string. For example suppose you want a label to contain

9

the first letter from each token in the von and Last parts, with no spaces; you
should use the format string

"{v{}}{l{}}"

so that BibTEX will produce ‘dlVP’ as the formatted string. You must give a
string for each piece whose default you want overridden (the example here uses
the null string for both pieces), and this string must immediately follow either
the single or double letter for the piece. You may not have any other letters at
brace-level 1 in the format string.

References

[1] Charles Louis Xavier Joseph de la Vallée Poussin. A strong form of the
prime number theorem, 19th century.

[2] Donald E. Knuth. The TEXbook. Addison-Wesley, 1984.

[3] Leslie Lamport. LATEX: A Document Preparation System. Addison-Wesley,
1986.

[4] Oren Patashnik. BibTEXing. Documentation for general BibTEX users,
8 February 1988.

[5] William Strunk Jr. and E. B. White. The Elements of Style. Macmillan,
third edition, 1979.

[6] Unilogic Ltd., Pittsburgh. Scribe Document Production System User Man-
ual, April 1984 Chapter twelve aund appendices E8 through E10 deal with
bibliographies.

[7] Mary-Claire van Leunen. A Handbook for Scholars. Knopf, 1979.

10

	1 Overview
	2 Changes
	New BIBTeX features
	Changes to the standard styles

	3 The Entries
	Entry Types
	Fields

	4 Helpful Hints
	References
	5 Bibliography-style hacking
	General description
	Commands
	The built-in functions
	Name formatting

	References

