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Significance testing for small
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Charles Kooperberg, Aaron Aragaki, Charles C. Carey, azdu$eh Rutherford
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1.1 Introduction

When there are many degrees of freedom it is sometimes lgisslcwhich signif-
icance test is carried out, as most analysis will give apiprately the same result.
However, when there are few degrees of freedom the choichichwgignificance test
is being used can have a strong effect on the results of apsimdUnfortunately, this
is often the case for microarray experiments, as reseabdndtories often perform
such experiments with only a few (say less than five) rep&aasons for the small
number of repeats include availability of specimens andenucs. Kooperberg et
al. (2005) compared several approaches to significandeddst experiments with
a small number of oligonucleotide (one-color) arrays. lis fraper we summarize
the results from that analysis, include a couple of add#ionethods, and describe
a similar comparison for methods of carrying out signifiGatesting for two-color
(red-green) arrays.

The limited number of repeats, together with the large Walitg that even the best
microarray platforms have, make small sample comparispagnactive. A standard
T-test for an experiment with six two-color arrays has, dejdeg on whether other
variables are controlled for, at most five degrees of freeddra resulting two-sided
test, witha: = 0.05 and a Bonferoni correction for 10000 genes requires a isttat
of 20.6 or more for significance. The lack of degrees of freedoreally what drives
the extremely large significance threshold for T-statistibe samer and Bonferoni
correction for 20 arrays requires a T-statistic of 6.3 orenghile a normal distribu-
tion only requires a Z-statistic of 4.6 or more, on the othardreducing the number
of genes of interest on the original array from 10000 to 509 teduces the required
T-statistic to 11.3.

Nonparametric (Wilcoxon) or permutation tests are no eaasy aut. For example,
for an experiment witht two-color (spotted) arrays, a P-value for a permutation
test can be no smaller thar*; if we want a two-sided test witk = 0.05 and
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2 SMALL MICROARRAY EXPERIMENTS

a Bonferoni correction for 10000 genes, we néeid be at least 19. Reducing the
number of genes to 500 reduces the minimkrto 15. Similarly, for a one-color
(oligonucleotide) array the P-value for a permutatiorstesth i cases ané controls

a P-value cannot be smaller thé%f); so for a two-sided test with = 0.05 and a
Bonferoni correction for 10000 genes, we need at I@ast 22 arrays. Reducing
the number of genes to 500 reduces the minimum number ofsaiwe}8.

As permutation tests are not going to help us, we need torobtdietter estimate
for the residual variance to overcome the lack of repeaterdlare two obvious
choices: we can combine different genes in the same expetioneve can combine
different experiments, if similar experiments were cateeit. When genes are com-
bined we can either choose to combine those genes for wheahetheral expression
level is similar as do, for example, Huang & Pan (2002) and é&aial. (2003), or
we can choose to combine all genes. An alternative appra@achtain more power
with small experiments is to add a stabilizing constant @ ¢ktimate of the vari-
ance for each gene or to use some (Bayesian) model for thessipn levels. SAM
(Tusher, Tibshirani & Chu, 2001) is a methodology that addsmstant to the es-
timate the variance. The approaches by Baldi & Long (200&jristedt & Speed
(2002), Smyth (2004), and Cui et al. (2005) are four relatdgrical) Bayesian
approaches. Wright & Simon (2002) discuss a closely relfrggplientist approach.

In this paper we do not control for multiple comparisons. taqgtice, when one car-
ries out tests for many thousands of genes simultaneoustyléple comparisons
correction or a correction of the false discovery (FDR) iatessential. See Dudoit,
Shaffer & Boldrick (2003) for an extensive overview of mplé comparisons cor-
rections. While several of these proposals use permutatguments to correct for
multiple comparisons, permutation typically either regaia substantial number of
replicates (that are not available in small experimentsjhey require implicit as-
sumptions about similarities in the variational propertiédifferent genes. In either
scenario, we believe that only well calibrated marginalaRsgs are going to yield
good multiple comparison corrected P-values.

P-values have the advantage that there are well establisbagures such as Type |
error and power that can be used to judge the performanceest.alihe FDR (Ben-
jamini & Hochberg, 1995) does not have such a simple meatuaheck whether
estimates of the FDR are accurate on a single experimentditiad just like for
multiple comparison procedures, there are proceduregimaimate the FDR from
P-values.

1.2 Methods

Most of the methods that we compare in this paper can be utdezt &r one-color
(oligonucleotide) arrays or for two-color (spotted) agsaye assume that the arrays
have been properly normalized; see Section 1.7 for how weaalized our arrays.
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1.2.1 Notation

Two-color spotted arrays For each gene and each two-color array we have an ex-
pression ratiaj; summarizing the (log-)expression ratio between experteieon-
ditionsk = 1 andk = 2 (that may be different between experiments) for gene
i=1,...,ninexperiment = 1,...J on replicate array = 1, ..., L;. For each
gene on each array we also have an estimate of the overafissipnz?;,, typically

this will be the (geometric) average of the normalized esgien for both channels

of the array. Unless there is confusion we will writg; instead of?; for the log-
expression ratios.

Let u;; be the “true” (log-)expression ratio of genén experiment; for condition
1 relative to condition 2. S¢ti; = Y, wij/Lj, 57; = Y, (wij — fij)?, andzf; =

2 Z?jl/LJ’-

One-color oligonucleotide arrays Similarly, for each gene and each one-color array
we have a (log-)expressian;x;, for experimental conditions = 1 andk = 2, for
genei =1,...,ninexperiment = 1,...J onreplicate array =1, ..., Lj.

Let u;5, be the “true” mean (log-)expression level of gena experimentj under
conditionk. Setﬁijk = Zl xijkl/ij andsfjk = Zl(:cijkl — ﬁijk)Q.

1.2.2 Significance Tests

All significance tests that we consider in this paper can btemrin the form
ﬁij
ij/\/Lj
for two-color arrays and
ﬁijl - ﬁijQ
~ 1 T
i\ Tin T Iz
for one-color arrays. Her®;; is an estimate of the variance:wof;;. The methods that
we discuss differ primarily in how the estimaidg; is obtained. The traditional test
statistics estimate;; uses only the data on gehiand experimenf. The approaches
that inflate the variance and those that combine genes atsdata on genes,
i* # 4; implicitly to estimate hyper-parameters for the empiriBayes approach
that inflates the variance, or explicitly to smooth the eatis fora;;. Finally the
approaches that combine experiments use data on expesifrienit # j. Most of
the methods below have a proper reference distributioralbernatively significance
levels can be obtained using permutations (see SectioB);li2.fact, some of the
authors recommend permutations as the method to obtaituBsva

Below we describe the test-statistics we are including incomparison. We provide
details for the two-color arrays, modifications for oneec@rrays are indicated.
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T-statistic. The traditional T-statistic is
tij = AL,
5ij//Lj

wheres;; = s7;/(L; — 1), providedL; > 1. The reference distribution is the
T-distribution with L; — 1 degrees of freedom, and the main assumption is that
for each gene and experiment thex;;,; are independent having a normal distri-
bution with variancer;;, although the T-test is generally considered to be robust
against departures from normality.
The two-sample T-statistic is the equivalent test for oakercarrays. This statis-
tic assumes that the variance for both experimental camditis the same. An
alternative is the Welch (1938) two-sample T-statistid th@es not make that as-
sumption. In Kooperberg et al. (2005) it was shown that thjgraach has almost
no power for small sample sizes, and should probably be addidr small mi-
croarray experiments.

Methods combining genes: smoothing the variance

There have been several proposals in the literature to ¢cwthie estimates of the
variance for several genes to obtain better estimates,adtth resulting test has
more degrees of freedom. Typically the assumption that densthat genes with the
same expression level have approximately the same varidincker this assumption
estimates for the variance can be obtained by smoothingatfi@nce as a function of
the expression level. For one-color arrays there are metiwhith smooth the vari-

ances jointly and methods which smooth variances sepgfatdboth experimental

conditions.

LPE Jain et al. (2003) describe a method they call “Local PooledrEest” (LPE).
As described in this paper, LPE only is applicable to oneicatrays. In their ap-
proach, le;;, be the the sample variance of thg;, forl = 1,..., L. LPE
regularizes these estimates for eg@ndk separately by smoothing tlag;;, ver-
susji;;,. The assumption being made here is that genes with the sgimession
level for the same experiment and the same condition haye@gimately) the
same variance. As the smoothing spline that is used efédgtinvolves averag-
ing a large number of genes, the authors use a normal refedéstabution. In our
study we have used the implementation by the authors, &lailathe R-package
(Ihaka & Gentleman 1996) LPE, which is available from CRANNductor
Since the method averages the variance separately for tadit@mns, it is cur-
rently only available for one-color arrays, where both ekpental conditions are
measured separately.

Loess Huang & Pan (2002) make several related proposals. The nifi@meshce
between their approach and the approach by Jain et al. (20@3t they first
computes;; and smooth these estimates agajiist= fi;;1 + fi;j2 for one-color
experiments and againsf; for two-color experiments. Their simulation results

* CRAN: The Comprehensive R Archive Network; deet p: / / www. 1 - pr oj ect . or g.
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show that, not unexpectedly, for the null-model a normadmefce distribution is
appropriate. We reimplemented their approach usingess smoother.

Methods combining genes: (empirical-)Bayesian modetfor

Rather than smoothing the variance explicitly as a funatibthe expression level,
we can include information from other genes for the analgb@particular gene by
making assumptions about the distribution of the varianceall genes. The infor-
mation about the other genes then allows us to estimate soypert)parameters,
that can be used to stabilize the variance estimate. Thera aariety of such meth-
ods with different motivations: ad-hoc (e.g. SAM, Tushehshirani & Chu 2001),

using an (empirical) Bayes argument (e.g. Baldi & Long 2QGinnstedt & Speed
2002, Smyth 2004), a James-Stein type estimator (Cui e08b) or a frequentist
approach (Wright & Simon 2003).

The first three approaches that we discuss combine the sammmceafj with
another estimate;; that hasd;; degrees of freedom, yielding a variance estimate

of
dijogi; + (Lj — 1)01‘%‘7 (1.1)

~2 —

%ij Lj+dy—1
that can be used in a T-test wily + d;; — 1 degrees of freedom. The three methods
Cyber-T, Limma, RVM use this approach; they differ primarily in the methods to
ObtainO'()Z‘j anddij.

Cyber-T The Cyber-T approach of Baldi & Long (2001) is motivated asubyf
Bayesian procedure. However as implemented in practieeSsetion 5 of Baldi
& Long 2001) the test is carried out using a T-test on (for weder arrays)L; +
vp — 1 degrees of freedom, and an estimate of the variance (cortpBref
’/00(2)1'3' +(Lj — 1)31'2]'

52 = , 1.2
J Lj + vy — 1 ( )

whereog,; is an estimate of the “prior variance” that is obtained as raning
average of the variance estimates of the genes in a “windésize w of similar
zj;. Thus the Cyber-T approach uses the average of a smoothiedaei(like
LPE andLoess, only using another smoother) with the regular variancehef t
T-statistic. A non-Bayesian interpretation of Cyber-T is thus that itntines a
smoothed estimated (as liroess and L PE) with a traditional estimate from the
T-test.

We used the defaultg;, = 10 and the window widthw = 101 from the R-
software available oht t p: //vi sitor.ics. uci.edu/ genex/cybert.
Note that the paper of Baldi and Long mentions another defduy = 10 — L.

Limma Smyth (2004) generalizes the approach from Lonnstedt &8g2002).
The main assumption in Smyth’s model is a prior distributionthe variances

2.
Uij'
LI B
2 o2 05"
Uij dOJSOj
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(We include the indey for the parameters of the prior, as they may be different
for different experimentg = 1, ..., J.) The model also includes priors on the co-

efficients for each gene in a linear regression model, wii¢he two sample case
reduces to the difference between the mean expressiongtwthgroups. Using
methods of moments estimators estimalgss?)j, and a few other parameters are
obtained. An inflated variance

=2 _ dojsg; + (Lj —1)53;

K LJ + dOJ - 1 ’

(compare 1.2) is used for a “moderated T-test” wif) + L; — 1 degrees of
freedom. Thus, a main difference between the approach oft5(@904) and the
approach of Baldi & Long (2001) is that Limma uses one singtingte for the
prior variance ggj) for all genes and it estimates the prior degrees of freedgm
based on the data, while the latter uses a smooth estimatieefqrior variance
ggij, but it uses a fixed number of prior degrees of freedgmThe approach
of Smyth (2004) is available from the Bioconductor packagarha. We used
Limma with the default options.

RVM The Random Variance Model (RVM) of Wright & Simon (2003) inélahe
variance similar to Baldi & Long (2001) and Smyth (2004), axdain a model
similar to (1.1). They assume an inverse Gamma modetfpand estimate the
two parameters from this model using the method of maximkediliood. Im-
plementation of their approach would require estimatintyaf parameters of an
F-distribution. We do not include RVM this method in our ccamigons, as we
could not locate publicly available software.

Shrinking Cui & Churchill 2003 and Cui et al. 2005 develop a James-3tkiink-
age estimat@,fj. After appropriate transformations this estimator “sksihthe
T-test estimates;; towards the mean variangg, o7; /I, where the exact amount
of shrinkage differs from gene to gene, and depends on thabifity for that
gene. Easy to implement formulas are given in Cui et al. (2086te that the
authors of this method recommend a permutation approaelS@etion 1.2.3) to
obtaining P-values. We still include this approach withpetmutations using a
normal reference distribution, as well as using permutafievalues.

(1.3)

Methods combining experiments

Instead of combining different gen@sthin one experiment, we can also combine
expression levels of the same gdyetweerexperiments. This would potentially be
useful if we have several smaller experiments, and it is tkasonable to assume
that for each gene the variance in each experiment is appetgly the same.

Pooled-T We define the pooled T-test statistic, combining experiseg
Cij = = g B
T4/ H

wheres} = 3. s7;/LandL =y (L; — 1), providedL > 0. The reference dis-

3 %
tribution is the T-distribution witi, degrees of freedom, and the main assumption
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is that ther; are independent for eaghand!, having a normal distribution with

mean;; and variance;.

For most of the other methods that we discussed it is, in {pi@@lso possible
to pool different experiments in obtaining a single varmestimates. As all these
methods already regularize the estimatesdsfon some way, pooling typically has
no effect, and the corresponding method behaves simildretdgarent” method, as
was confirmed for the oess approach in Kooperberg et al. (2005) andlfémma in
unpublished results.

Note that methods whose implementation allows for genezaigth matrices (e.g.
Limma) can yield pooled estimates by setting up an appropriatgesatrix and
testing appropriate contrasts.

1.2.3 Permutation P-values

Permutation of the arrays in an experiment can be an alteentt using a para-
metric reference distribution for a test statistic. Assuim&t we have a two-color
experiment withl arrays, and that the test statistic for tfiegene isl;. To compute
the significance of’; we also compute the test statistics for all genes for eadheof t
m = 1,...,2L experiments that are obtained by “flipping” the signs of ttjefor
some of the. (We omit the index of experimerjt) Note that one of these permuta-
tions will be the original design. L&t be the test statistic for thith gene for the
mth permutation. We can use

n 2L

SN NI < T /n2t

*=1m=1

as an estimate of the P-value correspondingjtdf L is larger than, say, 8 we may
want to sample permutations to save computing time; in thjzep that is not an
issue.

These estimates will be unbiased if (i) eathhas the same distribution under the
null-hypothesis, and (ii) no genes are differentially egsed. The first assumption
is not as severe as it appears. When a parametric distnibigtiosed the stronger
assumption, that the distributions of edthunder the null-hypothesis are the same
as a particular parametric distribution, is made. The seessumption is much more
severe, and it will lead to conservative P-values when ihtfaere are a substantial
number of differentially expressed genes (Storey & Titahi2003).

For one-color (oligonucleotide) arrays we randomly rergeathel; arrays with the
first experimental condition and thie, arrays with the second experimental condi-
tion, and proceed in a similar manner.
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Table 1.1 Organization of the two-color (spotted) data for our andy$Experiments whose
code start with a D are expected to have differences betwetngooups, while those starting
with an S are repeats, the digit “2” refers to the two-colop(dted) array type. The arrays for
experiments D2.3 and D2.4 and those for D2.5 and D2.6 arerdift; experiment S2.1 are
arrays from a cell-line not used for the other experiments.

Exp. sampleone sampletwo L; different

S2.1 KCecell KC cell 4 no
S2.2 SAM SAM 2 no
S2.3 SAM SAM 2 no
S2.4 SAM SAM 4 no
D2.1 SAM D-recomb304 2 vyes
D2.2 SAM D-recomb220 2 vyes
D2.3 SAM D-pure 2 yes
D2.4 SAM D-pure 4  yes
D2.5 SAM E-pure 4 yes
D2.6 SAM E-pure 4 yes
D2.7 SAM F-pure 6 yes

1.3 Data

For our analysis we use two sets of data. One comes from a@aeexperiment,
and is part of the data that was also used in Kooperberg &Q05], the other comes
from a not yet published study on Drosophila.

The two-color experimental data that we use come from asefispotted microar-
rays of Drosophila melanogastehat were grown in Suzannah Rutherford’s lab at
the Fred Hutchinson Cancer Research Center. The arraysadrefpa larger set
of experiments whose results have not yet been reportedsUibeet of arrays that
we compare here include some experiments that are sedfitthdridizations, and
some experiments where both samples are geneticallyeliffesee Table 1.1. Thus,
the experiments S2.1, S2.2, S2.3, and S2.4 are intendedatolisls that the tests
have the right size Type | error, and the experiments D2.12[122.3, D2.4, D2.5,
D2.6, and D2.7 are intended to establish the power of the.test

For the SAM samples RNA from a large number of flies that wereetjeal identical,

other than some being male and some being female, was comnaittethe RNA

for the arrays was taken out of this large pool. For the D-madz@04, D-recomb-
220, D-pure, E-pure, and F-pure lines for each array sanfples 15-30 flies that
were genetical identical, other than some being male ana dming female, was
combined. In addition we included four unrelated Drosagplaiéll line arrays. We
organized the experiments so that all experiments are “‘agpiged”: i.e. half of the
arrays have sample one on the red channel, the other halShavgle two on the red
channel. There are 13,440 spots (genes) on each array.
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Table 1.2 Organization of the one-color (Affymetrix) data for our dysis. HD: Huntington’s
Disease mouse, WT: wildtype mouse. Experiments whose tzoterish a D are expected to
have differences between both groups, while those stastitigan S are repeats, the digit “1”
refers to the one-color (Affymetrix) array type.

Exp. Tissue Mouse Groupl Group4,; Lj» different
S1.1 cerebellum DRPLA 26Q HD HD 2 2 no
S1.2 cerebellum DRPLA 26Q WT WT 2 2 no
S1.3 cerebellum YAC HD HD 3 2 no
S1.4 cerebellum YAC WT WT 3 2 no
D1.1 cerebellum DRPLA 65Q HD WT 4 4 yes
D1.2 cerebellum R6/212weeks HD WT 2 2 yes
D1.3 cerebellum N171 HD WT 4 4 yes

One-color experimental data was obtained using Affyméhix11K-A microarrays
generated for a series of experiments on Huntington's Bes@aouse models. The
results of these experiments were reported as a seriesatédgbapers (Chan et al.
2002; Luthi-Carter et al. 2002a; Luthi-Carter et al. 2008wy this analysis we com-
pare cerebellar gene expression in similarly aged micgicaya wildtype or mutant
form of the Huntington’s gene. Every comparison reporte€iran et al. (2002),
Luthi-Carter et al. (2002a), and Luthi-Carter et al. (200&towed some differen-
tially expressed genes, although the amount of differgatiaiffered considerably
between the experiments. For each of the experiments botipghad between 2 and
5 mice. Thus, all our repeats use different samples (sorestieferred to as “biolog-
ical repeats”) and are not repeat arrays using the same saifgoimetimes refereed
to as “technical repeats”), that could be expected to vay. [€here are 6,595 probe
sets (genes) on each array.

The experiments listed in Table 1.2 are the seven expergweamparing cerebellar
tissue used in Kooperberg et al. (2005); the six experimesitgy striatum tissue used
in that paper are not used here. As for the two-color experimmsome experiments
are intended to establish that the tests have the right sg®thers are intended to
establish the power of the tests.

1.4 Results

We analyze the experiments listed in Section 1.3 using tledysis methods de-
scribed in Section 1.2.2. For the experiments where bothggare different (D2.x
and D1.x) we prefer methods with the largest percentagegoifgiant genes (the
largest power), provided that the method does have theatqreecentage of signif-
icant genes in the experiments where both groups are the (&2neand S1.x): at
mosta% significant genes when tested at significance level
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Typically we show results far = 1% anda. = 0.01%. For the two-color arrays there
are approximately 11,000 genes after removal of spots gehat were too close to
background (see Section 1.7) . Assuming independence esgef85% confidence
interval for the percentage of significance genes based tigdrinomial distribution
is between 0.8 and 1.2% at= 1% and between 0 and 0.03%a@t= 0.01%. For the
one-color arrays there are 6,595 genes, thus these cordidercvals are slightly
larger (0.75 through 1.25% at= 1% and 0 and 0.045% ai = 0.01%). When we
average four experiments and (incorrect) assume indepeader both array types
we expect between about 0.9 and 1.1% significant genes-atl % and between 0
and 0.025% a&v = 0.01% for both array types.

1.4.1 Bandwidth selection for smoothers

Three methodsQyber-T, LPE, andL oess) require the choice of a bandwidth or
smoothing parameter. FeiPE andL oess this determines over how many genes the
variance is “averaged’. FaCyber-T the averaged variance is combined with the
variance for the individual genes.

In Table 1.3 we summarize the results for the two-color expent for thel oess
approach. The parametepan for the | oess() function in R is approximately
linear in the bandwidth for a local linear smoother. Frons tlable we note that the
bandwidth has very little influence on the results. The axai@n for this is that
even for the smallest bandwidth the variances of severamgenes are effectively
averaged. Smaller values span are not useful, as they will increasingly lead to
numerical problems in regions where there is less data.

We note that for all four choices sfpan and for all S2.x experiments at= 0.01%
and for two of the four of these experimentsat 1% the percentage of genes that
are called significant is much too large. The same was coadlidKooperberg et
al. (2005) for the one-color arrays.

In the remainder of our comparisons we usgan of 0.1, which yielded the lowest
average number of significant results for bath= 1% anda = 0.01% for the four
S2.x experiments. As the influence of the bandwidth appearsmal, we will use
Cyber-T andL PE with their default values.

1.4.2 Comparison of methods

In Tables 1.4 and 1.5 we show the results for seven of the rdstescribed in
Section 1.2.2 when applied to the two-color and one-colta dascribed in Section
1.3, respectively. Results for tHePE method are not available for the two-color
data. Cui et al. 2005 recommends permutations to obtaidues&or theShrinking
approach, as in Tables 1.6 and 1.7 and Figure 1.3 and 1.4blasTa.4 and 1.5 and
Figure 1.1 and 1.2 we use a normal reference distributiofigtwdiistribution is used
has a substantial impact on the results.
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Table 1.3 Performance of thé oess approach for various values of the bandwidgpgén)
parameter for the two-color experiments. We report the @ati@ge of genes that are called
differentially expressed at levels = 1% anda = 0.01%. Ideally the four S2.x experiments
would havea differentially expressed genes, while the seven D2.x woal@@ many such
genes.

oa=1% o =0.01%
span 10 1 0.1 0.01 10 1 0.1 0.01
S2.1 11 11 0.7 0.7 0.340 0.306 0.198 0.159
S2.2 78 7.0 58 6.6 2884 2507 1528 1.915
S2.3 22 21 20 20 0.984 0922 0.982 0.942

S2.4 07 06 06 06 0.262 0.262 0.230 0.212
S2-ave 30 27 23 25 1118 0999 0.735 0.807

D2.1 258 259 268 27.1 11.941 11.994 12.698 12.827
D2.2 31.7 318 323 329 16.817 17.000 17.682 18.300
D2.3 53.5 53.6 53.8 53.8 38.170 38.354 38.368 38.457
D2.4 543 544 544 547 37.709 37.858 37.774 38.043
D2.5 43.3 435 435 442 28.006 28.190 28.225 28.574
D2.6 73.0 732 765 76.6 62.230 62.431 66.313 66.501
D2.7 62.1 623 64.3 64.3 47.863 48.003 50.124 50.471

D2-ave 49.1 49.2 50.2 505 34.677 34.833 35.883 36.168

In Figure 1.1 we give a graphical display of how well thesehnds adhere to the
significance levels, and in Figure 1.2 we display power. €liiggires are probability-
probability plots on a logit-scale. That is, for a partioutaethod and a particular
experimentlep; be the two-sided (sometimes called signed) P-values. $hépj is
close to O there is evidence of under-expression amdsfclose to 1 there is evidence
of over-expression of group one relative to group two. We combine allp; for a
group of experiments and sort them. Assume that we Bawevalues. We plot the
sorted P-values (horizontal) agaitist. .., n)/(IN + 1). When the experiments that
we consider are self-versus-self comparisons we wouldthlkese plots to follow
the identity line, as that implies that the significance Iese “unbiased”. Curves
that flatten out are particularly worrisome, as they suggigsiificantly differentially
expressed genes that are in fact false positives. Curvéstbanore vertical than
the identity line suggest statistics that are too conseeatomething that is not a
concern when there is in fact no difference, but would likalyt us when we use the
same method to analyze data where some genes are difflyestjrressed. Second,
for groups of experiments where there is a difference batveth samples we want
the most horizontal curves, among the methods that did nutrgée a substantial
number of false positives for the repeat experiments.

From Figure 1.1 we see that theessandL PE approach identify substantially more
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Figure 1.1 Performance of the various approaches to significancengaiising an explicit
reference distribution for small microarray experimerts the combined two-color and one-
color self-versus-self experiments. For unbiased mettiselsurves should follow the identity
line.
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Figure 1.2 Performance of the various approaches to significancengaiising an explicit
reference distribution for small microarray experimerts the combined two-color and one-
color experiments that involve different samples. Mordzamtal curves correspond to more
powerful methods.
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differentially expressed genes than the nominal levelsHerexperiments where in
fact the two samples being compared are repeats.Chter-T approach shows a
mild number of increases, and none of the other approacloegssterious bias. For
both groups of experiments a normal reference distribuborthe Shrinking ap-
proach appears too conservative.

Table 1.4 elaborates on this. At a significance level ef 1% only theL oessmethod
shows a substantial bias, and it does that for five out of eigtet sets. For microarray
experiments the more stringent level= 0.01% is very relevant, as multiple com-
parisons corrections often will imply selecting genes at ignificance levels. We
note that thd_oess again shows substantial bias. ThEE approach also indicates
ten times more significant genes than the nominal valuebihisis present for three
of the four data sets. At this significance level tbgber-T method shows a modest
bias; in particular we notice that the bias is only subsgritr one dataset (two-
color experiment S2.2). The excess percentage of signifgeares for thé>ooled-T
approach is minimal, and could just be due to chance.

From Figure 1.2 we note that for all methods far more geneglardified as differ-
entially expressed by the two-color experiments than byotecolor experiments,
as the curves for the two-color experiments are much morizdmal than those
for the one color experiments. This is largely an effect & #ttual data used, as
the two-color Drosophila experiments involved substdigtatered flies, while the
differences between the mice involved in the one-color kgon’s disease exper-
iments are much more subtle. We do note from this figure thdlghthe ordering
of the methods is largely unchanged, suggesting that sinceanclusions remain
the same for two dramatically different experiments (défe technologies, different
amounts of differential genes) they are likely fairly robaed may well generalize
to many other situations.

For both the two-color and the one-color experimentd tbess approach is the most
powerful. This is not a surprise, since the method does nattaia significance
levels for the experiments where both samples are repeatdafy, we are not
surprised that the PE method is quite powerful for the one-color experimentssThi
method also did not maintain significance levels for the expents where both sam-
ples are repeats. Among the remaining methods, we notégidooled-T approach
performs best for the two-color experiments, followed by @yber-T andLimma
approach, while for the one-color experiments @yber-T andLimma approach
seem slightly more powerful than tiReoled-T approach.

Table 1.5 confirms all these conclusions. Interestinglytiier D2.x (two-color) ex-
periments we notice that for those experiments with twoyarn@®?2.1, D2.2, and
D2.3) thePooled-T approach is particularly more powerful. Maybe this is nat su
prising: the borrowing of degrees of freedom between erpenis, as th€ooled-T
approach is doing, is particularly useful when the numbetegfrees of freedom is
small.
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Table 1.4Percentage of differentially expressed genes using varapproaches to signifi-
cance testing using an explicit reference distributionsiorall microarray experiments for the
individual two-color and one-color self-versus-self expents at significance levets = 1%

anda = 0.01%. For unbiased methods the percentage of differentiallyesqed genes should
be close tax.

a=1% T-test Limma Shrinking Cyber-T Loess LPE Pooled-T

S2.1 0.2 0.1 0.0 0.1 0.7 NA 0.3
S2.2 11 0.1 0.0 2.3 5.8 NA 0.3
S2.3 0.6 0.2 0.0 0.3 2.0 NA 0.4
S2.4 0.2 0.1 0.0 0.0 0.6 NA 0.1
S2-ave 0.5 0.1 0.0 0.7 2.3 NA 0.3
S1.1 0.4 0.2 0.0 0.4 0.7 0.4 0.0
S1.2 0.6 0.3 0.0 1.4 2.7 11 0.2
S1.3 0.8 0.1 0.0 0.3 3.9 0.3 3.2
S1.4 0.3 0.0 0.0 0.1 2.6 0.1 13
Sl-ave 0.5 0.2 0.0 0.6 2.5 0.5 1.2

a=0.01% T-test Limma Shrinking Cyber-T Loess LPE Pooled-T

S2.1 0.000  0.000 0.000 0.000 0.198 NA 0.017
S2.2 0.009  0.000 0.000 0.277 1.528 NA 0.061
S2.3 0.018 0.000 0.000 0.000 0.982 NA 0.009
S2.4 0.000 0.000 0.000 0.000 0.230 NA 0.009
S2-ave 0.007  0.000 0.000 0.069 0.735 NA 0.024
S1l.1 0.015 0.030 0.000 0.061 0.197 0.106 0.000
S1.2 0.000  0.000 0.000 0.045 0.697 0.243 0.000
S1.3 0.000  0.000 0.000 0.015 0.500 0.061 0.091
S1.4 0.000 0.000 0.000 0.000 0.728 0.000 0.000

Sl-ave 0.004  0.008 0.000 0.030 0.531 0.102 0.023
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Table 1.5Percentage of differentially expressed genes using varapproaches to signifi-
cance testing using an explicits reference distributionsimall microarray experiments for
the individual two-color and one-color experiments thatalve different samples at signifi-

cance levelsy = 1% anda = 0.01%. The larger the percentage of differentially expressed
genes, the more powerful a method is.

a=1% T-test Limma Shrinking Cyber-T  Loess LPE Pooled-T
D2.1 1.9 12.1 0.0 15.8 26.8 NA 30.9
D2.2 2.3 16.0 0.0 21.9 32.3 NA 28.9
D2.3 4.0 34.8 0.0 43.6 53.8 NA 48.2
D2.4 31.0 44.8 22.6 45.5 54.4 NA 62.7
D2.5 20.9 31.6 13.1 35.1 43.5 NA 52.4
D2.6 53.6 66.5 46.3 66.9 76.5 NA 58.6
D2.7 51.8 57.6 46.9 55.9 64.3 NA 56.3
D2-ave 23.7 37.6 18.4 40.7 50.2 NA 48.3
D1.1 2.6 3.4 2.0 4.0 6.4 2.7 3.3
D1.2 1.2 5.3 0.1 5.6 6.7 5.0 15
D1.3 1.6 1.6 1.0 1.6 3.0 0.9 0.8
D1-ave 1.8 3.4 1.1 3.7 5.4 2.9 1.9
a=0.01% T-test Limma Shrinking Cyber-T Loess LPE Pooled-T
D2.1 0.009 0.864 0.000 2.148 12.698 NA  10.835
D2.2 0.026 1.219 0.000 5.051 17.682 NA  11.928
D2.3 0.027  7.699 0.000 19.441 38.368 NA  26.722
D2.4 1.994 15.378 0.296 21.732 37.774 NA  44.632
D2.5 1.083 4.752 0.201 10.856 28.225 NA  31.806
D2.6 7.729 39.769 2.858 47.705 66.313 NA  40.295
D2.7 17.023 29.986 11.971 34.357 50.124 NA  38.347
D2-ave 3.984 14.238 2.189 20.184 35.883 NA  29.224
D1.1 0.121  0.349 0.030 1.046 2.593 0.788 0.516
D1.2 0.000 2.153 0.000 1.668 2.835 2.092 0.243
D1.3 0.106  0.243 0.061 0.379 1.410 0.288 0.182
D1l-ave 0.076  0.915 0.030 1.031 2.280 1.056 0.313
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1.4.3 Permutation P-values

As detailed in Section 1.2.3, an alternative approach taioirtg P-values is a per-
mutation approach in which the test statistics for all geamescombined. In Figure
1.3 we give a graphical display of how well each of the methemdisere to the sig-
nificance levels when P-values are determined using sucppmoach, and in Fig-
ure 1.4 we display power for these situations. We do not shenmnptation results
for the Pooled-T approach: since this procedure combines arrays from diftezx-
periments a permutation procedure is less standard, Isetbidethe results using a
T-distribution already give satisfactory results.

The displays in Figures 1.3 and 1.4 are organized similaigorEs 1.1 and 1.2. We
notice that the permutation approach for computing P-wailuelds approximately
unbiased results for all approaches as all curves in Figidollow the diagonal.
However, as expected, the permutation approach reducesr fowany of the ap-
proaches using randomization. In Figure 1.4 we note thaptbeedures based on
permutation are considerably less powerful than the pnae=tthat do not use per-
mutation (as shown in Figure 1.2). In particular, we notleat the curves in Figure
1.4 all stay within a “band” of the diagonal. This is in fact@sequence of using
the permutation approach with a small number of repeatspective of the actual
number of differentially expressed genes, there is a maximumber of genes that
can be differentially expressed at any particular signifaealevel thanks to the ex-
perimental design. This is explained in detail below in tieedssion of Table 1.7.

Tables 1.6 and 1.7 for the permutation based proceduresgaained similar to Ta-
bles 1.4 and 1.5 for the procedures using a reference distib From these tables
we draw the same conclusions as from Figures 1.3 and 1.4ewhiel permutation
approach does control the significance levelppropriately, it limits the power. We
note from these tables that no methods and no data sets aptiexs. The part
of Table 1.7 for the two-color (D2.x) experiments with diffat samples clearly il-
lustrate an artifact of the permutation approach. As we Isaen before, the D2.x
experiments have very many differentially expressed géses Table 1.5). But in
Table 1.7 there seems to be a cap: at a significance level ef 1% for experi-
ments D2.1, D2.2, and D2.3 all methods suggest at most 2#reliffially expressed
genes, for experiments D2.4, D2.5, and D2.6 all methodsesigd most 8% differ-
entially expressed genes, and for experiments D2.7 allodsthuggest at most 32%
differentially expressed genes. Let’s focuss on experirién4. This is an experi-
ment with 4 arrays. There are thus at md$t= 16 permutations from “flipping”
the arrays. Since each permutation arises twice (whenraysare flipped relative
to the first analysis), only 8 of these permutations are widssume that for this
experiment 40% of the genes are differentially expresseddale 1.5 suggest), and
these 40% of the genes have very large test-statisticse Hrerabout 10,000 genes
on these arrays, thus 4,000 test-statistics are large asggrithand. Now assume
that among the 7 other permutations none of the test-stateste larger thard. Then
out of 8 x 10,000 = 80, 000 test-statistics 4,000 are larger thanHowever, at the
a = 1% level at mosi.01 x 80,000 = 800 can be called significant at = 1%.
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Self-self comparisons: permutation procedures
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Figure 1.3 Performance of the various approaches to significancertg@stsing a permutation
approach rather than a reference distribution for small roarray experiments for the com-

bined two-color and one-color self-versus-self experitsidfor unbiased methods the curves
should follow the identity line.
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Figure 1.4 Performance of the various approaches to significancertg@stsing a permutation

approach for small microarray experiments for the combithed-color and one-color exper-

iments that involve different samples. More horizontalvesrcorrespond to more powerful
methods.
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Table 1.6 Percentage of differentially expressed genes using varapproaches to signifi-
cance testing using a permutation approach rather than eregfce distribution for small mi-
croarray experiments for the individual two-color and oc@er self-versus-self experiments
at significance levelsy = 1% and a = 0.01%. For unbiased methods the percentage of
differentially expressed genes should be close.to

a=1% T-test Limma Shrinking Cyber-T Loess LPE
permuted permuted permuted permuted permuted permuted
S2.1 0.1 0.0 0.0 0.0 0.0 NA
S2.2 1.0 0.0 0.2 0.4 0.6 NA
S2.3 0.6 0.1 0.1 0.0 0.4 NA
S2.4 0.2 0.1 0.1 0.0 0.2 NA
S2-ave 0.5 0.1 0.1 0.1 0.3 NA
S1.1 0.3 0.1 0.1 0.1 0.1 0.1
S1.2 0.6 0.4 0.4 0.3 0.4 0.4
S1.3 1.1 0.5 0.4 0.2 0.5 0.5
S1.4 0.3 0.1 0.1 0.1 0.4 0.2
Sl-ave 0.6 0.2 0.2 0.1 0.4 0.3
a=0.01% T-test Limma Shrinking Cyber-T Loess LPE
permuted permuted permuted permuted permuted permuted
S2.1 0.000 0.000 0.000 0.000 0.000 NA
S2.2 0.000 0.000 0.000 0.000 0.000 NA
S2.3 0.017 0.000 0.000 0.000 0.000 NA
S2.4 0.000 0.000 0.008 0.000 0.000 NA
S2-ave 0.004 0.000 0.002 0.000 0.000 NA
S1.1 0.000 0.000 0.000 0.000 0.000 0.000
S1.2 0.000 0.000 0.000 0.000 0.000 0.000
S1.3 0.000 0.000 0.000 0.015 0.000 0.015
S1.4 0.000 0.000 0.000 0.000 0.000 0.000

Sl-ave 0.000 0.000 0.000 0.004 0.000 0.004
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Table 1.7 Percentage of differentially expressed genes using varapproaches to signifi-
cance testing using a permutation approach rather than arezfce distribution for small
microarray experiments for the individual two-color andesoolor experiments that involve
different samples at significance levels= 1% anda = 0.01%. The larger the percentage of
differentially expressed genes, the more powerful a meathod

a=1% T-test Limma Shrinking Cyber-T Loess LPE
permuted permuted permuted permuted permuted permuted

D2.1 1.6 2.0 1.8 2.0 2.0 NA
D2.2 15 2.0 2.0 2.0 2.0 NA
D2.3 1.9 2.0 2.0 2.0 2.0 NA
D2.4 7.7 8.0 8.0 8.0 8.0 NA
D2.5 7.4 8.0 8.0 7.9 7.5 NA
D2.6 8.0 8.0 8.0 8.0 0.0 NA
D2.7 30.5 31.8 30.5 31.8 24.8 NA
D2-ave 8.4 8.8 8.6 8.8 7.8

D1.1 2.8 3.8 3.8 3.6 2.8 2.8
D1.2 1.2 3.0 2.6 2.7 2.7 2.7
D1.3 1.9 1.8 1.8 1.4 1.3 1.0
Dil-ave 2.0 2.9 2.7 2.6 2.3 2.1
a=0.01% T-test Limma Shrinking Cyber-T Loess LPE

permuted permuted permuted permuted permuted permuted

D2.1 0.008 0.008 0.008 0.008 0.017 NA
D2.2 0.017 0.017 0.017 0.017 0.026 NA
D2.3 0.009 0.008 0.000 0.009 0.018 NA
D2.4 0.068 0.076 0.076 0.068 0.079 NA
D2.5 0.075 0.083 0.059 0.084 0.079 NA
D2.6 0.075 0.075 0.075 0.025 0.068 NA
D2.7 0.308 0.315 0.283 0.308 0.314 NA
D2-ave 0.080 0.083 0.074 0.074 0.086 NA
D1.1 0.121 0.258 0.212 0.243 0.106 0.030
D1.2 0.000 0.000 0.015 0.015 0.015 0.015
D1.3 0.136 0.243 0.258 0.212 0.121 0.045

D1-ave 0.086 0.167 0.162 0.157 0.081 0.030




20 SMALL MICROARRAY EXPERIMENTS

Which is 8%, rather than the 40% that are differentially egsed, of all the genes on
the array. (In fact the percentage is slightly lower as a fese permuted genes also
have large statistics.) We could choose to ignore the “paijipermutation in getting
the percentiles of the permutation distribution, but thiand violate the assumptions
of exchangeability under the null-hypothesis of no différ@ expression. When the
number of arrays increases, or when the number of diffaatygxpressed genes is
much smaller, this artifact clearly disappears.

1.5 Discussion

The choice of significance test in microarray experiments \@w replication can
dramatically influence the results. For both one-color ama-¢olor arrays we set
up our experiments so that we could both judge which appesagield approxi-
mately unbiased P-values when the experimental condiionglentical, and which
approaches are most powerful when both conditions differfé@used on P-values,
rather than for example the FDR, as we believe that a “goodalBe will yield a
“good” multiple comparisons correction, and a multiple qgarisons adjustment by
itself can not save a procedure that yields badly calibrBtedlues.

The two groups of experiments that we considered differedniother aspect be-
sides technology: our one-color experiments had a modesbeuof differentially
expressed genes, while our two-color experiments had maaty genes. Given the
difference between the two groups of experiments the siityilen results was strik-
ing.

Our main conclusions are:

e TheT-test has almost no power when the sample size is small. When there a
less than, say, six repeat arrays some of the alternativéie@w are much more
powerful. Kooperberg et al. (2005) concluded that the ldfglosver is even more
extreme for the Welch statistic.

e Combining an estimate of the overall variance with an egéno&the individual
variance, such as is done formma (Smyth 2004) ancCyber-T (Baldi & Long
2001) appear very effective. Apparently such a regulddpatduces the noise
in the variance estimates effectively. Because of the anityl of the results for
these two approach, and the much worse results for the singapproaches,
we hypothesize that for th€yber-T approach the running average estimate of
00i; is effectively estimating an overall variance, rather thancal variance. In
our experimenttimma performed slightly better tha@yber-T.

e An approach which borrows degrees of freedom from other raxeatsPool ed-
T, first proposed in Kooperberg et al. (2005), performs eguedll as theLimma
and Cyber-T approach. In fact, when the sample size is real smali=( 2) it
seems to perform slightly better. Obviously for this apptothe main question
is “what to combine”. In Kooperberg et al. (2005) a small siation study was
carried out suggesting that there can be a reasonable arabearperiment-to-
experiment variation without seriously inflating the typerror. The fact that we
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can without much problem combine cell-line experimenthviRINA harvested
from fruit-flies (as was done for the two-color experimentthis paper) confirms
that conclusion.

e Methods which solely use a smoothed estimate of the varjauoh as thé PE
approach (Jain et al. 2003) and theess approach (inspired by Huang & Pan
2002) can give severely biased results by inflating the peage of significant
genes well beyond a pre-specified lewglwhen in fact there are no differences
between the two samples. For theess approach this was evidentat= 1% and
a = 0.01%, for theLPE approach it was only evident at= 0.01%. However,
since for microarray experiments often multiple compargsoorrections are car-
ried out very small significance levels are in fact used, weldevant to avoid
methods that solely use smoothing approaches. A reasohddyias because of
smoothing the variance may be due to the fact that with thenatization meth-
ods developed in recent years (see Section 1.7) the relagioveen variance and
expression level has been considerably reduced.

In particular, in Figure 1.5 for an individual two-color ayrand one of the two-
color experiments and in Figure 1.6 for one of the one-cotpeeiments we show
the relation between the difference between the two sigiefisside of Figure
1.5) or the variance and the average signal (other panedsjaA be seen, the re-
lation between average signal and variance is minimal, afakit the correlation
between the variance from one experiment to the next expatifior the same
gene is much larger than the correlations in these figurea (de& shown). Thus,
locally averaging the variances will sometimes yield vacies that are too large
and sometimes yield variances that are too small. When tti@nz is too small
there is a substantial chance of incorrectly identifyingeagas differentially ex-
pressed.

e A permutation approach to obtaining P-values severelyaeslthe number of
genes that are identified as differentially expressed fpegments with a lot of
differential expression. This limits our conclusions abitx Shrinking approach
(Cui et al. 2005), as for this approach it is the only suggkstethod to obtain
P-values.

All approaches that we studied are either available in R«pges available from
CRAN or Bioconductor, or are easily implemented in R code.
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1.7 Appendix: Normalization of arrays

Two-color arrays For the two-color arrays we first excluded all spots with a log
base 2 expression of less than 5, and spots whose backgexghavias higher than
the foreground level for either channel. This excludes ah&ub% of the spots, pri-
marily spots that do not hybridize well. In particular of th®,440 spots on our ar-
rays, 1,296 were excluded on all 36 arrays: of the remainiragssonly about 2%
were excluded. We then subtracted the background and uséd-diploess correc-
tion using the Limma functionor mal i zeW t hi nArrays() with defaults. Any
spot that had at least two estimates for a particular exparirwas included in our
analysis. We employed various graphical QC tools, and ffelt &ll arrays were of
good quality.

One-color arrays For all methods we analyzed gene expressions that were nor-
malized by the RMA algorithm of Irizarry et al. (2003). Wealsarried out the same
analysis using the log of the MAS5 Average Difference sunynaard obtained essen-
tially the same results. For RMA we normalized all arraysudtaneously; however
when we analyzed each of the experiments separately, thiksregere again essen-
tially the same. We employed various graphical QC tools faltithat all arrays were

of good quality.
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