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Abstract

With the development of genomic technologies, enormous amount of biological data have been and

are continually being generated. They include genomic sequence data, gene expressions, protein-

protein interactions, protein structures, protein localizations, protein functions, etc. For biological

problems of interest, each data source contributes partially to the understanding of the problems.

An important issue is how to integrate the different data sources to obtain a more complete un-

derstanding of the problems. In addition, most of the data sources from the high throughput

experiments contain many false positive and false negative errors. Statistics plans an essential role

in understanding the reliability of the observed biological data as well as to choose a more reliable

data set from the observed ones. Statistics and machine learning techniques can help the integration

of different data sources to understand the biological problems. We present two examples: to study

the reliability of observed protein interaction data sets, and to predict protein functions combining

different data sources.
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1 Introduction

In recent years, an increasing number of genomes of model organisms have been sequenced. Using

these genomic sequences, researchers have been able to make tremendous progress in the study of

genomes, such as numerous successes in the identification of genes, the detection of protein-binding

DNA motifs, and the determination of gene regulation. Beyond these successes is the far more

challenging and rewarding task of understanding proteomes by means of, e.g., (1) discovering signal

transduction pathways, (2) determining protein structures, (3) detecting protein-protein, protein-

DNA, and protein-metabolite interactions, (4) detecting post-translational modifications of proteins,

and ultimately (5) elucidating the functions of genes and their protein products.

Unlike a genome, which is a stable feature of an organism, a proteome varies with the state

of the development, the tissue, and the environment. Among many features of a protein, the

interaction with other proteins is one of the most important aspects of its function. Traditionally,

protein interactions have been studied individually by biochemical techniques. However, the speed

of discovering new interactions increased dramatically in the last couples of years; several high-

throughput techniques have produced a total of about 80,000 interactions between yeast proteins,

which constitute a rough view of the actual protein-protein interaction network. The successful

methods include yeast two-hybrid assays (Uetz et al. 2000; Ito et al. 2000; Ito et al. 2001), protein

complex purification-mass spectrometry (Gavin et al. 2002; Ho et al. 2002), microarray gene

expression profiles (Eisen et al. 1998), genetic interactions (Tong et al. 2002; Mewes et al. 2002),

and computationally predicted protein associations (Enright et al. 1999; Marcotte et al. 1999a;

Marcotte et al. 1999b). These protein interactions will be very useful to study gene regulatory

networks, pathways, as well as functions of proteins. To understand the interaction network and its

applications for protein function prediction, it is essential to design a joint approach using tools from

mathematics, statistics, computer science, and molecular biology. In recent years, several groups

have developed computational tools to analyze and compare the different interaction data sets.

Two issues are important in assessing the usefulness of an experimentally observed protein-
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protein interaction data set. One is the reliability which is defined as the fraction of real protein-

protein interactions in the observed interactions and the other is the coverage which is defined as

the fraction of real interactions in the observed data over all the real interactions. A database of

high coverage is not very useful if its reliability is low. Results of comparative analysis of multiple

data sets have shown significantly different coverage and reliability for each technique (Deane et

al. 2002; Mering et al. 2002; Mrowka et al. 2001). In this paper we review methods to study the

following problems:

1. Estimate the reliability of a putative observed interaction data set;

2. Give a score that a pair of proteins interact by combining different data sources.

Assigning functions to novel proteins is one of the most important problems in the post-genomic

era. Many researchers have undertaken the task of functionally analyzing one of the most well-

studied species, the yeast genome, comprising approximately of around 6400 proteins, of which

roughly one-third do not have known functions (Mewes et al. 2002), and the other two-thirds, most

likely, have many other unknown functions. The annotation of the yeast genome will have a great

impact on genomes of higher organisms such as the human: new genes can be annotated through

their homologous yeast genes.

Several approaches have been applied to assign functions to genes, including analyzing gene

expression patterns, phylogenetic profiles, protein fusions and protein-protein interactions. Gene

expression analysis can cluster genes based on similar expression patterns. This makes it possible

to assign a biological function to genes, depending on the knowledge of the functions of other genes

in the cluster (Eisen et al. 1998). However, expression profiling gives an indirect measure of a gene

product’s biological and cellular function, because many cellular processes and biochemical events

are ultimately achieved by interactions of proteins. A more complete study of protein functions can

be achieved by looking at not only the mRNA levels but also the protein interaction network. We

will review the following methods for protein function prediction:

1. A Markovian random field (MRF) model for assigning functions to proteins using highly
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reliable protein-protein interaction data and other data sources including gene expression

profiles, protein sequence similarities, and features of individual proteins, and correlations of

protein functions.

2. The use of support vector machine (SVM) for protein function prediction combining different

data sources;

3. A kernel-based MRF model for protein function prediction.

The paper is organized as follows. We first provide the data sources for the studies. Then we

divide the paper into two major sections: estimating the reliability of observed putative protein

interactions and predicting protein functions based on reliable protein interactions and other data

sources. We then discuss the connections of the two topics and future research questions.

2 Data Sources

Protein interactions have traditionally been studied individually by genetic, biochemical, and

biophysical techniques. However, these techniques are generally labor intensive and cannot keep

up with the speed new proteins are discovered. Recently, several high-throughput methods for the

detection of protein interactions have been developed. These include the yeast two-hybrid assays

(Ito et al. 2000; Ito et al. 2001; Uetz et al. 2000), mass spectrometry (Gavin et al. 2002) and gene

knockouts (Tong et al. 2002). In silico (computational) methods for interaction prediction include

the chromosomal proximity method (Overbeek et al. 1999), the gene fusion method (Enright et al.

1999; Marcotte et al. 1999a), the phylogenetic method (Pellegrini et al. 1999), and the combined

method (Marcotte et al. 1999b; Pavlidis et al. 2001; Zheng et al. 2002). Several databases have

been developed to collect different sources of protein interaction data including the Munich Infor-

mation Center for Protein Sequences (MIPS: http://mips.gsf.de/) (Mewes et al. 2002), Database

of Interacting Proteins (DIP: http://dip.doe-mbi.ucla.edu/) (Xenarios et al. 2002), Biomolecular

Interaction Network Database (BIND: http://www.bind.ca/)(Bader et al. 2003), and the Gen-

eral Repository for Interaction Datasets (GRID: http://biodata.mshri.on.ca/grid)(Breitkreutz et
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al. 2003).

Gene Expressions are widely used to study the relationship between proteins. It is generally

believed that a pair of interacting protein pair are more likely to be co-expressed than random

protein pairs and thus gene expression data can be useful for evaluating the reliability of protein

interaction data as well as the probability that two proteins interact. It is also generally believed

that if two proteins are highly correlated, they are more likely to have similar functions. Therefore,

gene expression data can also be useful for protein function prediction. For this study, we use the

gene expression data from Spellman et al. (1998). Other gene expression data can also be used.

Protein localizations. Proteins belong to different localizations in the cell and proteins within

the same locations are more likely to interact. Therefore, protein localization data can be useful for

predicting protein interactions. We use the protein localization data of Huh et al. (2003) in this

study.

Domains. The amino acid sequence of a protein is extremely important for the proteins func-

tion. A proteins sequence determines its secondary and tertiary structure and thus, determines

its interaction partners and its biological functions. Protein domains are conserved regions of pep-

tide sequences with relatively independent tertiary structures and represent important features for

understanding protein function. We use Pfam domains as the source of domain information. The

SwissPfam (ver7.5) (ftp://ftp.genetics.wustl.edu/pub/pfam/) defines the mapping between proteins

SWISS-PROT/TrEMBL accession numbers and Pfam domains.

Gene Ontology (GO) (http://www.geneontology.org/) (GO Consortium 2001) describes gene

products (proteins or RNA) based on three principles: Cellular component, Molecular function, and

Biological process. GO has a directed acyclic graph (DAG) structure. The high level categories

are more general and contain many more genes than low level categories. For protein function

prediction, we base on the known gene annotation given in GO.

All the databases listed above are publicly available.
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3 Assessing the reliability of protein interaction data

Many protein interaction data sets generated from various laboratories using different techniques

are available. It is difficult to compare different interaction data because different conditions and

experimental techniques may not detect the same type of interactions. Another difficulty comes from

the fact that the true interaction data is unknown. Two issues need to be considered in comparing

different interaction data sets. One is the reliability of the observed interaction data set defined

as the overlap between the true interactions and the observed interactions over all the observed

interactions. The other is the coverage defined as the overlap between the true interactions and

the observed interactions over the true interactions. Without knowing the true interaction data, it

is difficult to study the coverage of a certain observed interaction data set. On the other hand, it

is possible to study the reliability of an observed interaction data set using gene expressions and

localizations.

Mrowka et al. (2001) first observed that the distribution of correlation coefficients of gene

expressions for true interacting protein pairs is stochastically larger than that for random protein

pairs. The distribution of gene expression correlation coefficients for observed interacting protein

pairs from high-throughput yeast-two-hybrid assays is between that for random protein pairs and

that for true interaction pairs. The observations indicate that the set of observed protein interactions

from high-throughput experiment is a mixture of random protein pairs and true interaction pairs.

Several problems are of interests:

1. How do we choose the true interaction set (the gold standard)?

2. How do we estimate the fraction of true interactions among a set of observed interactions?

3. Is it possible to give a reliability score for an individual observed interaction?

3.1 Estimating the reliability of putative protein interactions based on
gene expressions

There is no consensus choosing the gold standard set of true protein interactions. Mrowka et

al. (2001) used MIPS physical interactions (excluding those from high-throughput experiments)
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as the gold standard. They used a bootstrap method to count how many random pairs need to

be added to the reference data such that it has the same statistical behavior of gene expression

correlation coefficients as that of the observed protein-protein interaction data, and then estimate

the reliability using the sampling data. On the other hand, Deane et al. (2002) used INT, a

subset of DIP interactions which are derived from small-scale experiments, as the gold standard

for real interactions. They formalized the above idea assuming that the distribution of the square

of Euclidian distance between expression profiles of putative interacting pairs is a mixture of that

for the real interacting pairs and that of random pairs. They then used a least square approach to

estimate the reliability of the putative protein interaction data. Deng et al. (2003) further extended

the idea in Deane et al. (2002) and used a maximum likelihood estimation (MLE) approach to

estimate the reliability of a putative interaction data set. Similar to Mrowka et al. (2001), they

used MIPS physical interactions as a reference set for true interactions. The same approach can be

applied to estimate the fraction of protein pairs that belong to the same complex in an observed

complex data set. The method can be briefly described as follows.

Let α be the reliability of a given set of putative protein interactions. Let Oe(·), Te(·) and Re(·)

be the distribution of the correlation coefficients for gene pairs based on gene expressions for the

given set of putative protein interactions, the true protein interaction set, and the random protein

pairs, respectively. Then

Oe(·) = αTe(·) + (1− α)Re(·). (1)

Te(·) and Re(·) can be approximated based on the correlation coefficients for pairs of proteins within

the golden standard set of protein interactions and the correlation coefficients of all the protein pairs,

respectively.

Deng et al. (2003) split the values of correlation coefficients into K = 20 bins. Let nk be

the number of observed interaction pairs in the k-th bin. Let pk and qk be the fractions of real

interactions and random pairs in the k-th bin, respectively. Then the likelihood function can be
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defined as:

L(α) =
K∏

k=1

(αpk + (1− α)qk)nk . (2)

L(α) is a convex function and a classical gradient algorithm can be used to estimate the parameter

α, α̂, by maximizing L(α).

The following equation was used to calculate the variance of α̂,

Var(α̂) =

(
K∑

k=1

nk
(pk − qk)2

(α̂pk + (1− α̂)qk)2

)−1

. (3)

3.2 Estimating the reliability of putative protein interactions based on
gene expressions and protein localizations

Huh et al. (2003) generated a large-scale protein localization map of yeast and showed that protein

interactions are strongly enriched among co-localized proteins and proteins between specific cellular

locations. Therefore we can use both gene expressions and localizations for reliability estimation.

Again we model the putative interaction data set as a mixture of true interactions and random

pairs. Let θll′ and δll′ be the probability that a true interacting pairs and random protein pair

belong to locations (l, l′), respectively. Let nkll′ be the number of observed protein pairs within the

putative interaction data set with correlation coefficient in the k-th bin and with localizations (l, l′).

Combining gene expression data and protein localization data results in the following likelihood

function

L(α) =
K∏

k=1

L0∏

l,l′=1

(αpkθll′ + (1− α)qkδll′)nkll′ , (4)

where L0 is the number of locations being considered. α can again be estimated by maximizing

L(α).

The following equation was used to calculate the variance of α̂,

Var(α̂) =




K∑

k=1

L0∑

l,l′=1

nkll′
(pkθll′ − qkδll′)2

(α̂pkθll′ + (1− α̂)qkδll′)2



−1

. (5)
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3.3 Applications to protein interactions from high throughput experi-
ments

We applied the above methods to protein interaction data sets from several high throughput exper-

iments. Two groups of interaction data sets were studied (Lee et al. 2005). The first group includes

pairwise physical interactions including the MIPS, DIP, Uetz’s (Uetz et al. 2000) and Ito’s (Ito et

al. 2000; Ito et al. 2001) interaction data sets. The ItoiIST indicates the set of protein pairs that

are observed to interact i times. The MIPS physical interactions are used as a true interaction data

set. The estimated reliability together with their standard deviations of the estimates using gene

expressions and protein localizations alone or combined are given in Table 1.

The second group includes the protein complexes such as the MIPS complex data, the TAP

complex data, and the HMS-PCI complex data. Any pair of proteins within the same complex are

considered interacting. We treat the MIPS complex data as a true protein complex data set. Table

1 gives the estimated reliability and the corresponding standard deviation for the various protein

complex data. The standard deviation of the estimate using gene expression alone is very large

with the estimated reliability showing irregular patterns. For example, the estimated reliability

for Ito4IST (0.895) is much higher than the estimated reliability of Ito6IST (0.676) contradicting

with our intuition. The standard deviation of the estimated reliability using localization alone is

much smaller and the estimated reliability for ItoiIST increases as i increases consistent with our

intuition. Finally the standard deviation of the estimate based on the combined data is smaller

than that using gene expressions or protein localizations alone.

3.4 Estimating the probability of interaction for individual protein pairs

The above approach can only estimate the fraction of true interactions in a putative interaction

data set. However, it does not give a reliability score for a particular observed interaction. Saito

et al. (Saito et al. 2003) proposed the criterion “interaction generality” to assess the reliability

of a particular interaction protein pair based on the idea that a protein cannot interact with too

many interacting partners. If a protein interact with a large number of proteins, it is most likely
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Localization Gene Expression Both
Data Reliability Standard Err. Reliability Standard Err. Reliability Standard Err.

Physical Interactions
DIP 0.587 0.0082 0.815 0.0244 0.619 0.0076
Uetz 0.685 0.0273 0.529 0.0843 0.699 0.0257
Ito1IST 0.268 0.0140 0.167 0.0383 0.293 0.0133
Ito2IST 0.411 0.0259 0.558 0.0831 0.470 0.0253
Ito3IST 0.532 0.0345 0.753 0.1144 0.611 0.0321
Ito4IST 0.552 0.0397 0.895 0.1436 0.640 0.0366
Ito5IST 0.547 0.0429 0.964 0.1567 0.640 0.0394
Ito6IST 0.556 0.0491 0.676 0.1768 0.641 0.0451
Ito7IST 0.608 0.0544 0.791 0.1942 0.682 0.0492
Ito8IST 0.614 0.0572 0.878 0.2054 0.684 0.0514

Complexes
TAP 0.4544 0.0063 0.585 0.0081 0.516 0.0056
HMS-PCI 0.1975 0.0042 0.248 0.0053 0.205 0.0037

Table 1: Reliability of the protein physical interaction data (Uetz’s, DIP, and Ito’s with different
IST hits), and the protein complex data (the TAP and the HMS-PCI) using the protein localization
data, the gene expression data and both data sets.

a “stick” protein and the observed interactions associated with this protein does not have real

functional associations. Recently, Troyanskaya et al. (2003) and Jansen et al. (2003) developed

Bayesian approaches to give a reliability measure for a particular putative interaction based on the

observations that interacting protein pairs are more likely to have similar functions, to have similar

gene expression patterns, and to be in the same location. Troyanskaya et al. (2003) gave a reliability

score for two proteins to be functionally related and Jansen et al. (2003) gave a reliability score for

two proteins to be in the same complex. In a more recent paper, (Jaimovich et al. 2005) proposed

a Markov random field (MRF) model for predicting protein interactions. They assumed a MRF

model for the interaction network based on the theory of random graphs (Frank and Strauss 1986).

Conditional on the true interaction network, they assumed probability models for the observed

data. Machine learning approaches were used to estimate the parameters as well as to predict the

posterior probability of interactions for protein pairs conditional on the observations from different

data sources. More details can be found in (Jaimovich et al. 2005).
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4 Protein function prediction using protein interaction data

It has been observed that interacting proteins are more likely to have similar functions (Mering et

al. 2002). Therefore, protein interaction networks can be useful for protein function prediction. For

a given protein, all the proteins interacting with the given protein form its neighbors. Fellenberg et

al. (Fellenberg et al. 2000) and Schwikowski et al. (Schwikowski et al. 2000) developed a neighbor

counting method for protein function prediction. For an unknown protein, they counted the number

of known proteins of its neighbors for each function of interest and assigned the unknown protein

with the function category having the highest frequency. One problem with this approach is that

it does not consider the frequency of the proteins having certain functions of interest. Hishigaki et

al. (Hishigaki et al. 2001) developed a χ2-statistic based approach for protein function prediction.

For an unknown protein and a function of interest, a χ2-statistic is calculated by comparing the

observed frequency with the expected frequency of neighbors having the function of interest. The

unknown protein is assigned the function with the highest χ2 statistic. Both the counting method

and the χ2 method do not consider unknown protein neighbors. Several novel methods have been

developed for protein function prediction based on interaction networks and other data sources. In

this section we review these approaches.

Suppose a genome has N proteins P1, · · · , PN . Let P1, · · · , Pn be the unknown proteins and

Pn+1, · · · , Pn+m be the known proteins, N = n+m. A protein may have several different functions.

To simplify the problem, we study each functional category separately. For a function of interest,

let Xi = 1 if the i-th protein has the function and 0 otherwise. The problem is to assign values

to X = (X1, · · · , Xn) conditional on the protein interaction networks, other pairwise relationships,

features of individual proteins, and the functions of the known proteins.

4.1 A Markov Random Field (MRF) model for protein function predic-
tion

Based on the idea of guilty-by-association, Deng et al. (Deng et al. 2002) first developed a MRF

model for protein function prediction. The basic idea is to assign a prior probability for X =
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(X1, · · · , Xn+m), the configuration of function labelling based on the protein interaction network.

Under this model, they calculated the posterior probability distribution for (X1, · · · , Xn) conditional

on the network and (Xn+1, · · · , Xn+m). The key is how to assign the prior probability distribution.

Different priors give different accuracy for protein function prediction.

4.1.1 A MRF model based on one network

In (Deng et al. 2002), they assigned the prior as follows. Let π be the probability of a protein

having the function of interest. Without considering the interaction network, the probability of a

configuration of X is proportional to

N∏

i=1

πxi(1− π)1−xi =
(

π

1− π

)N1

(1− π)N , (6)

where N1 =
∑N

i=1 xi.

Deng et al. (Deng et al. 2002) then considered one interaction network. Let S denote all the

interacting protein pairs. The probability of the functional labelling conditional on the network is

proportional to

exp(βN01 + γN11 + κN00), (7)

where Nll′ is the number of (l, l′)-interacting pairs in S, and

N11 =
∑

(i,j)∈S

xixj

= #{(1 ↔ 1) pairs in S},

N10 =
∑

(i,j)∈S

(1− xi)xj + (1− xj)xi

= #{(1 ↔ 0) pairs in S}, and

N00 =
∑

(i,j)∈S

(1− xi)(1− xj)

= #{(0 ↔ 0) pairs in S}.

(8)
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Therefore, the total probability of the functional labelling is proportional to exp(−U(x)), where

U(x) = −αN1 − βN10 − γN11 − κN00

= −α

N∑

i=1

xi − β
∑

(i,j)∈S

xixj

− γ
∑

(i,j)∈S

(1− xi)xj + (1− xj)xi

− κ
∑

(i,j)∈S

(1− xi)(1− xj),

(9)

and α = log( π
1−π ).

U(x) is referred as the potential function in the field of MRF and defines a global Gibbs distri-

bution of the entire network,

Pr(X | θ) =
1

Z(θ)
exp(−U(x)), (10)

where θ = (α, β, γ, κ) are parameters and Z(θ) is a normalized constant calculated by summing over

all the configurations:

Z(θ) =
∑

x

exp(−U(x)).

Z(θ) is called the partition function.

Several other approaches for protein function prediction based on one interaction network have

been developed. In particular, Vazquez et al. (2003) considered multiple function categories and

proposed to maximize the number of interactions within the same function categories. For one

function of interest, it is equivalent to maximize

N00 + N11

where N00 and N11 are defined as above. The (Deng et al. 2002) model differs from the (Vazquez et

al. 2003) model in two significant ways. (1) Vazquez et al. (2003) used only the interaction network

and did not consider the fraction of proteins having the function of interest in the known proteins. (2)

Vazquez et al. (2003) gave an equal weight to intra-function class interactions. Letovsky and Kasif

(Letovsky and Kasif 2003) proposed a model to assign functions to proteins based on a probabilistic

analysis of graph neighborhoods in a protein-protein interaction network, which is fundamentally
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a MRF model, and the belief propagation algorithm was used to assign function probabilities for

proteins in the network.

4.1.2 A Markov Random Field (MRF) model for multiple networks

Deng et al. (Deng et al. 2003b) further extended the above model to multiple networks and to

include features of individual proteins. Assume that L sources of protein pairwise relationships that

may be useful for protein function prediction are available. A network can be built based on each

pairwise relationship denoted as Net1, Net2, · · · , NetL, respectively. The entire network we consider

is the union of all the networks denoted as S.

Similar to equation (7), our belief for the functional labelling of all the proteins based on network

Netl is proportional to

P{ labelling |Netl} ∝ exp(βlN
(l)
10 + γlN

(l)
11 + κlN

(l)
00 ), (11)

where (N (l)
10 , N

(l)
11 , N

(l)
00 ) are defined similarly as equation (8).

Multiplying over all the networks, our belief for the functional labelling of all the proteins is

proportional to

P{ labelling |networks } ∝
L∏

l=1

exp(βlN
(l)
10 + γlN

(l)
11 + κlN

(l)
00 )

= exp
L∑

l=1

(
βlN

(l)
10 + γlN

(l)
11 + κlN

(l)
00

)
.

(12)

Our total belief for the functional labelling of all the proteins is proportional to the multiplication

of equations (6) and (12).

Then an MRF over all the functional labelling is defined by

P{labelling, networks} = exp(−U(x))/Z(θ), (13)

where

U(x) = −
n+m∑

i=1

xiα−
L∑

l=1

(
βlN

(l)
10 + γlN

(l)
11 + κlN

(l)
00

)
, (14)

θ indicates the vector of parameters, and Z(θ) is the summation of exp(−U(x)) over all the functional

labelling. Under the above model, all the parameters (κ1, κ2, · · · , κL) are redundant and are set to

1. In the terminology of MRF, U(x) is called the potential function.
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4.1.3 Incorporating features of individual proteins

In addition to protein pairwise relationships, features of individual proteins can be very important

for protein function prediction. A feature refers to an observation about a protein. It can be

the presence or absence of a motif signal, the protein’s conservation and localization, the protein’s

isoelectric point, its absolute mRNA expression level, or mutant phenotypes from experiments

about the sensitivity or resistance of disruption mutants under various growth conditions. Several

investigators have developed protein function prediction methods based on features of individual

proteins (Clare et al. 2002; Gupta et al. 2002; Hegyi et al. 1999; Jensen et al. 2002; Kell et al.

2000; King et al. 2001; Stawiki et al. 2002; Drawid et al. 2000). Deng et al. (Deng et al. 2003b)

integrated features into the MRF models for protein function prediction.

Suppose we have M features of interest, F1, F2, · · · , FM . The m-th feature can take values

0, 1, 2, · · · km − 1 where km is the number of categories for the m-th feature. Let the feature vector

corresponding to protein Pi be fi = (fi1, fi2, · · · , fiM ), where fim is the index for the m-th feature

of the i-th protein. For the m-th feature, let p1m(k) (p0m(k)) be the conditional probability that a

protein has feature index k given that a protein has (does not have) the function of interest. For

simplicity, we assume that all the features contribute independently to the functions of proteins.

For a given feature vector f = (f1, f2, · · · , fM ), define

P1(f) =
M∏

m=1

p1m(fm),

P0(f) =
M∏

m=1

p0m(fm).

The probability of the features of all the proteins given the functional labelling is

P{features | labelling} =
∏

i:Xi=1

P1(fi)×
∏

i:Xi=0

P0(fi). (15)

Multiplying equations (13) and (15), we have the following probability model

P{labelling, networks, domain features} =

P{labelling, networks} × P{domain features | labelling}.
(16)

Deng et al. (Deng et al. 2003b) described methods to estimate the posterior distribution of the
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functions of the unknown proteins given the features of all the proteins, the different sources of

protein pairwise relationship, and the annotations of the known proteins.

4.1.4 Computational Issues

Given the above models, the problem is to estimate the posterior probability distribution given the

annotation of the known proteins, the features of all the proteins, and the network. The parameters

are also unknown. Using equation (16), it can be shown that

log
Pr(Xi = 1 |F, X[−i], θ)

1− Pr(Xi = 1 |F,X[−i], θ)

=αi +
L∑

l=1

(βl − 1)M (i)
0 (l) + (γl − βl)M

(i)
1 (l),

(17)

where F is the feature information for all the proteins, X[−i] = (X1, · · · , Xi−1, Xi+1, · · · , Xn+m),

αi = log πP1(fi)
(1−π)P0(fi)

, M
(i)
0 (l) and M

(i)
1 (l) are the numbers of neighbors of protein Pi labelled with 0

and 1 according to the l-th network, respectively. The parameters can be estimated based on the

network consisting of the known proteins using the pseudo-likelihood idea (Li 1995) by an S-plus

routine (Venables et al. 1996) using equation (17).

Once all the parameters have been defined, Gibbs sampler (Liu 2001) can be used to estimate the

posterior probability distribution of (X1, · · · , · · · , Xn). The algorithm can be described as follows:

1. Randomly set the value of missing data Xi = λi, i = 1, · · · , n with probability π.

2. For each protein Pi, update the value of Xi using equation (17).

3. Repeat step 2 T times until all the posterior probabilities Pr(Xi |D, X[−i], θ) are stabilized.

4.2 Kernel-based methods for protein function prediction

In the MRF formulation, we only consider immediate neighbors for proteins. The protein interaction

network can be used to define similarity between any pair of proteins using the diffusion kernel

(Kondor and Lafferty 2002). In the following we first briefly describe kernel based methods of

Lanckriet et al. (Lanckriet et al. 2004a; Lanckriet et al. 2004b; Lanckriet et al. 2004c) to combine

different data sources for protein function prediction. Then we describe our effort to combine the

idea of kernel based method with the MRF model.
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4.2.1 Support vector machine (SVM) and semidefinite programming (SDP)

In a series of recent papers, Lanckriet et al. (Lanckriet et al. 2004a; Lanckriet et al. 2004b; Lanckriet

et al. 2004c) developed kernel-based methods for protein function prediction using SVM. Suppose

that there are L data sources such as protein interactions, gene expressions, domains, localizations,

etc. For the l-th data source, a kernel matrix Kl (semi-positive definite) is defined. For continuous

data such as gene expressions, the Gaussian diffusion kernel can be used. For protein interactions,

diffusion kernel on graphs can be used (Kondor and Lafferty 2002). Several other kernel matrixes

have been developed for different sources of data structures in (Lanckriet et al. 2004a; Lanckriet

et al. 2004b; Lanckriet et al. 2004c). To integrate different data sources, Lanckriet and colleagues

considered the linear combinations of the kernel matrixes

K =
L∑

l=1

µlKl

where µl ≥ 0, l = 1, 2, · · · are parameters to be determined.

They used SVM with 1-norm soft margin to build a classifier. The problem can then be solved

by solving the following constraint maximization problem:

maxα,t2αT e− ct

subject to t ≥ 1
ri

αT diag(y)Kldiag(y)α, l = 1, 2, · · · , L

αT y = 0,

C ≥ α ≥ 0,

(18)

where ri = trace(Ki), c = µT r and y is the annotation of the known proteins. This problem is a

quadratically constraint quadratic program (QCQP) problem (Boyd and Vandenberghe 2001) and

can be solved using standard software such as SeDuMi (Sturm 1999). The computational time is

O(n3), where n is the number of proteins in the training set.

4.2.2 Combining kernel with the MRF model for protein function prediction

Lanckriet et al. (2004a) showed that SVM described above outperformed the MRF approach in

almost all the function categories considered. One of the main reasons probably is due to the
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inclusion of multiple level neighbors in the kernel based methods. Note that Kl(i, j) defines a

similarity between protein Pi and protein Pj based on the l-th data source. Similar to equation

(11), the probability of the labelling based on the l-th network Nl can be modelled as

exp(βlD10(l) + γlD11(l) + κlD00(l)) (19)

where βl, γl, and κl are constants, and

D11(l) =
∑

i<j

Kl(i, j)I{xi = 1, xj = 1},

D10(l) =
∑

i<j

Kl(i, j)I{(xi = 1, xj = 0) or (xi = 0, xj = 1)},

D00(l) =
∑

i<j

Kl(i, j)I{xi = 0, xj = 0}.

(20)

The summations are over all the protein pairs. Multiplying equation (6) and equation (19) for

l = 1, 2, · · · , L, we obtain the the total probability proportional to

exp

(
αN1 +

L∑

l=1

(βlD10(l) + γlD11(l) + κlD00(l))

)
(21)

From equation (21), it can be shown that

log
Pr(Xi = 1 |X[−i], θ)

1− Pr(Xi = 1 |X[−i], θ)

=α + (βl − κl)K
(i)
0 (l) + (γl − βl)K

(i)
1 (l).

(22)

where
K

(i)
0 (l) =

∑

j 6=i

Kl(i, j)I{xj = 0},

K
(i)
1 (l) =

∑

j 6=i

Kl(i, j)I{xj = 1}.

Note that if we let Kl(i, j) = 1 when protein i interacts with protein j and Kl(i, j) = 0 otherwise in

the l-th network, this new model is the same as the MRF model of Deng et al. (Deng et al. 2002).

We can similarly develop a MCMC approach to approximate the probability that an unknown

protein having the function of interest. We refer the above approach as kernel-based MRF (KMRF)

4.3 Applications to real data

All the methods described above have been applied to predict protein functions. The MRF model

has been used for protein function prediction first based on the MIPS function classification (Deng
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et al. 2002; Deng et al. 2003b) and later were extended to functions defined in GO (Deng et al.

2004). The SVM approach has been used to predict protein functions based on MIPS (Lanckriet

et al. 2004a), to predict ribosomal proteins and memberane proteins (Lanckriet et al. 2004c). A

summary paper for protein function prediction based on SVM is given in (Lanckriet et al. 2004b).

The new KMRF method has been applied for protein function prediction based on GO (Lee et al.

2005b) and for prediction of protein essentiality (Tu et al. 2005). The KMRF approach can be

easily extended to incorporate correlated functions. For most functions that have been considered

so far, the SVM approach outperformed the MRF approach. The KMRF approach has similar

performance as the SVM approach. For example, for predicting protein essentiality, the receiver

operating characteristic (ROC) scores for the MRF, SVM, and the KMRF approaches are 0.804.

0.812, and 0.831, respectively, based on the core interaction data set. Integrating protein function

based on cellular processes, conservation, and localizations into the model increased the ROC score

of the KMRF model to 0.869.

5 Discussion

Enormous amount of biological data have been generated and stored in public and private databases.

These data sources are extremely important for biological studies. However the data are generally

noisy and contain many false positive and false negative errors. There are no systematic statistical

tools to choose the most reliable data from the noisy data. The various data sources can most likely

contribute to our understanding of the biological problems of interest. However the data sources are

usually correlated and their contributions to our understanding of the biological problems are not

independent. An important issue is how to integrate the usually noisy and correlated data sources

to understand the biological problems.

In this paper, we review our recent efforts in integrating different data sources for biological

studies. First we describe likelihood based methods for estimating the reliability of putative inter-

action data sets. We show that the localization data give more accurate estimation of the reliability

than using the gene expression data. Integrating the localization and gene expression data can give
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even more accurate estimates of the reliability of the different data sets. Other statistical methods

for estimating the probability of two proteins being interact integrating different data sources have

also been developed.

Second we describe methods for protein function prediction based on interaction networks, ge-

netic interactions, other pairwise relationships, as well as features of individual proteins. These

approaches include MRF, SVM, and KMRF. As far as we know, the combination of kernels with

MRF is novel in protein function prediction. The simplicity of KMRF and its high accuracy in

protein function prediction warrant further studies of the this approach in other fields.

In protein function prediction, we assume implicitly that the networks under consideration, such

as the protein interaction network and genetic interaction network, are highly reliable. Therefore

we used the core interaction data in DIP in all our studies on protein function prediction. We tried

to use all the interactions (not reliable) in DIP for protein function prediction and, as expected, the

prediction accuracy is lowered. A problem is how best to use all the interactions for protein function

prediction. The effect of incompleteness of the interaction data on protein function prediction is

also unknown.

In summary, we show the power of integrating multiple data sources for biological studies.

Significant questions remain as to how to integrate noisy and incomplete data in biological studies.

It is also important to develop methods to evaluate the dependence among the different data sources

and to integrate the correlated data sources for biological studies.
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