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Abstract

We shed light on the effect of network resources and user behavior on network traffic through a physically motivated

model. The classical on–off model successfully captures the long-range, second-order correlations of traffic, allowing us

to conclude that transport protocol mechanisms have little influence at time scales beyond the round trip time. How-

ever, the on–off model fails to capture the short-range spikiness of traffic, where protocols and congestion control mech-

anisms have greater influence. Based on observations at the connection-level we conclude that small rate sessions can be

characterized by independent duration and rate, while large rate sessions have independent file size and rate. In other

words, user patience is the limiting factor of small bandwidth connections, while users with large bandwidth freely

choose their files. We incorporate these insights into an improved two-component on–off model—which we call the

alpha-beta on–off model—comprising an aggressive alpha component (high rate, large transfer) and passive beta com-

ponent (residual). We analyze the performance of our alpha-beta on–off model and use it to better understand the

causes of burstiness and long-range dependence in network traffic. Our analysis yields new insights on Internet traffic

dynamics, the effectiveness of congestion control, the performance of potential future network architectures, and the

key parameters required for realistic traffic synthesis.
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1. Introduction

The goal of this work is to develop a physically

motivated model for the traffic at some point in a

network based on observations at the connection

level. By connection-level, we mean all the packets

that have the same source and destination IP
ed.
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addresses, port numbers and protocol. Connection

level measurements contain much more informa-

tion than the simple aggregate; we study the statis-

tics of session parameters such as duration, file size

and rate, and their impact on aggregate traffic. We
show that traffic can be roughly divided into two

types: alpha connections (high rate, large transfer)

and beta connections (remaining).

The most widely used traffic model based on

connection-level information is the classical on–

off model [1,2]. The on–off model successfully cap-

tures the second-order correlations of traffic, in

particular their long-range dependence (LRD).
The on–off model models traffic as a superposition

of a large number of on–off sources, with heavy-

tailed on and/or off periods. A conclusion com-

monly drawn based on the on–off model is that

at large timescales (beyond several RTTs), trans-

port protocol mechanisms like TCP do not have

a significant impact on the network traffic [3].

Unfortunately, however, the on–off model fails
to capture several key aspects of the network traf-

fic, including its spikiness at small timescales.1

Our goal in this paper is to use a new traffic

analysis technique—alpha-beta analysis [4]—to de-

velop a physically motivated traffic model that

accurately matches both the large and small time

scale behavior of network traffic yet retains the

simplicity of the on–off model. We call our model
the alpha-beta on–off model.

The alpha-beta traffic analysis is motivated by

the observation that small scale spikiness comes

from heterogeneity in network resources. The

analysis involves decomposing the network traffic

into two components according to the connection

bandwidth: the large bandwidth alpha component

contributes all the small scale spikes and is highly
non-Gaussian, while the small bandwidth beta

component contributes most traffic and is Gauss-

ian. This decomposition explains the LRD of net-

work traffic at very large time scales as well as the

highly non-Gaussian marginals and multi-fractal

scaling on small time scales. The alpha-beta analy-

sis parsimoniously accounts for user behavior, net-
1 By small scale spikiness, we refer to the deviation of the

distribution from Gaussianity.
work topology, and the heterogeneous distribution

of network band-widths (see Fig. 5).

The alpha-beta analysis indicates that the bursts

in traffic are not due to a ‘‘conspiracy’’ of connec-

tions [4]. This is a significant finding, because the
classical on–off model [1,2] produces bursts only

by having a large number of on-sources active at

the same time. Hence, the on–off model should

be extended to accommodate small-scale spikes.

We will analyze two different traffic data sets

(see Appendix A for information on the datasets)

to show that the key parameters of the on–off

model are different for the alpha and beta compo-
nents. This stems from the difference in the dynam-

ics that give rise to alpha and beta components.

Alpha flows have high bandwidth and small RTTs,

and hence typical connection durations are small

and not a concern. Beta flows are constrained by

a bottleneck bandwidth, and transfer of large files

translates to a large latency, which a user may find

undesirable. Our alpha-beta on–off model uses this
intuition to model the on–off parameters differ-

ently for the alpha and beta components.

This paper is organized as follows. In Section 2,

we briefly describe the on–off model. Section 3

gives an overview of our previous work on al-

pha-beta traffic decomposition and summarizes

the properties of the alpha and beta components

of traffic. In Section 4, we set the stage for our al-
pha-beta on–off model by identifying the compo-

nents in the real traffic that make up the on and

off periods. Section 5 analyzes the real traffic to

verify our claim of how the network and the user

behavior affect the on–off parameters. In Section

6, we present our alpha-beta on–off traffic model

and use it to synthesize traffic. Section 7 describes

the implications of our traffic model in the real
Internet. After an overview of the related work

in Section 8, we conclude with a summary of our

work and future work in Section 9.
2. The on–off model

The on–off model, hinted in [5] and formally
introduced in [2] provides a foundation for traffic

modeling based on physically verifiable properties.

The model posits that network traffic is a super-
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position of a large number of independent on–off

sources with the on and off periods drawn from

heavy tailed distributions. (A random variable X

has a heavy tailed distribution if the asymptotic

shape of the distribution is hyperbolic: P[X >
x] � x�a, as x! 1, 0 < a < 2.) This gives rise to

self-similarity in the aggregate process—a frac-

tional Gaussian noise (fGn) process [1]—whose

LRD is determined by the heavy-tailed nature of

the on and off periods. The key parameter in the

description of LRD is the Hurst parameter H that

captures the long-term correlation structure. The

case H = 0.5 corresponds to the absence of LRD.
In the case 0.5 < H < 1, LRD occurs. For an over-

view of LRD, refer to [2].

The on–off model has its roots in a certain re-

newal reward process introduced by Mandelbrot

[6] (and further studied in [7]) and provides the the-

oretical underpinning for much of the recent work

on network traffic modeling. Park et al. [8] have

shown that the application layer property of
heavy-tailed file sizes is preserved by the protocol

stack and mapped to approximately heavy-tailed

busy periods at the network layer.

The factual basis of heavy tailed on-periods has

been shown in [8]. The corresponding empirical

basis for heavy tailed file sizes in UNIX file sys-

tems, whose transport may be the cause of heavy

tailed on-periods in packet trains, is shown in [8].
The on–off model is able to create both fGn and

asymptotic second-order self similarity.
2 By analogy with the dominating alpha and submissive beta

members of the animal kingdom.
3. Alpha-beta traffic analysis

In this section we survey our previous work [4]

on alpha-beta traffic analysis.

3.1. Alpha and beta components of traffic

Connection-level information enables us to con-

duct a refined analysis of traffic bursts. In aggregate

traffic models (including the on–off model), traffic

bursts can only arise from a large number of con-

nections transmitting bytes or packets simulta-
neously. That is, bursts stem from a ‘‘constructive

interference’’ of many connections. With connec-

tion-level information, we can test this hypothesis.
If it were true, then we should observe in real

traffic traces a large number of active connections

during bursts. However, [4] demonstrates that this

is not the case. Bursts in the sequence of bytes-per-

time-bin generally do not coincide with large val-
ues in the sequence of connections-per-time-bin.

In [4] we proposed a new analysis technique

that exploits connection-level information to sepa-

rate a measured traffic trace into two distinct com-

ponents at a time-scale T of interest.

1. In each T-second time bin, tally the contribu-

tion of bytes coming from each active
connection.

2. If the contribution of a connection is greater

than a threshold, then label it as an alpha con-

nection.2 Section 6 presents some suggestions

on choosing the threshold. The aggregate of

all the alpha connections gives the alpha com-

ponent of traffic.

3. The beta component is obtained by subtracting
the alpha component from the total trace.

Our procedure thus decomposes the total traffic

trace into alpha traffic + beta traffic, as shown in

Fig. 1. The statistical properties of the two compo-

nents can be summarized as follows:

Alpha traffic: The alpha component constitutes

a small fraction of the total workload but is en-
tirely responsible for the spiky behavior. Alpha

traffic is highly non-Gaussian.

Beta traffic: At time-scales coarser than the

round-trip time (RTT), the beta component is very

nearly Gaussian and strongly LRD (i.e., approxi-

mately fGn), provided a sufficiently large number

of connections are present. Moreover, the beta

component carries the same fractal scaling
(LRD) exponent as the aggregate traffic.

See [9] for a number of computationally simpler

schemes for decomposing traffic into alpha and

beta components, including a scheme based on

wavelet thresholding that does not require explicit

connection information to extract the alpha traffic.
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Fig. 1. Decomposition of a traffic trace into the sum of an alpha component and beta component.
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3.2. Origins of alpha and beta components

We now show that the alpha connections come

from large file transfers over large bottleneck

bandwidths.

Our first and most striking observation is the
grouping of alpha connections according to their

source-destination host pairs. We collect all con-

nections with the same source and destination

hosts into an end-to-end (e2e) group. If random ef-

fects of the networking protocols were causing

spikes, then we would find the dominating alpha

connections distributed randomly over the e2e

groups. The above-mentioned clustering indicates
that the opposite is true.

More strikingly, our second observation is that

if an e2e group contains one alpha connection,

then all connections in that group are either alpha

or too short to cause spikes. This demonstrates

clearly that spikes are caused by large volume con-

nections over particular (necessarily high-band-

width) e2e paths.
An observation based on a more refined analy-

sis provides a potential physical reason for the ori-

gin of alpha spikes. To this end, we compare for

each connection its total transfer load with its peak

rate, which we compute as the maximum number

of bytes sent by the connection during any time

period of duration T. Fig. 2 displays the total load

versus peak rate (for T = 500 ms) for all connec-
tions within four particular e2e groups. The

groups in the top row contain at least one alpha

connection, the groups in the bottom row none.

For all of the connections in groups 1 and 2,

most of the transfer is completed within a single
time period of T = 500 ms. We conclude that these

connections were not limited in their bandwidth

consumption. In other words, the e2e paths corre-

sponding to groups 1 and 2 have a high bottleneck

bandwidth. On the contrary, the connections in

groups 3 and 4 are obviously not getting as much
bandwidth as they could consume. None of these

connections are alpha. With such a consistent pic-

ture, we can exclude causes such as re-routing as

the main cause for spikes, since it would be highly

unlikely that all connections in a group would be

systematically affected.

It is instructive to compare the elephant-mice

traffic decomposition [10] and the alpha-beta traf-
fic decomposition. Elephants and mice are based

on the file size—a source property. Alpha and beta

are based on the peak rates of connections, which

depend both on the user behavior (we need large

files to create large peak rates) as well as network

characteristics (we require large bandwidths to

accommodate large peak rates).

We conclude that the majority of spiky connec-
tions are due to large file transfers over large bottle-

neck bandwidth e2e paths. This summarizes our

previous work on alpha-beta analysis. In the next

sections, we motivate and present our alpha-beta

on–off model.
4. Towards an alpha-beta traffic model

To motivate our model design, recall that the

mechanisms that control the alpha and beta traffic

components are different. In particular, beta con-

nections are rate-limited, whereas the alpha connec-
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Fig. 2. Plot of peak rate (at 500 ms) and total transfer for all connections which share the same pair of source and destination hosts.

The connections are ordered in non-decreasing values of total transfer. Note the high peak rates in the top row (alpha connections).

Note the starvation of connections in the groups in the bottom row and the overall low peak rate (beta connections).
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tions are not (as seen from Fig. 2). The goal of this

section is to understand the key parameters for the
on–off model for the alpha and beta components.

Aiming at a physically motivated model of the

on–off type, we first search for the most appropri-

ate real world equivalent of an on-period in the

model. The choices for an on-period are enumer-

ated below:

• Connection: The byte-stream belonging to the
same connection (5-tuple of source and destina-

tion IP addresses and port numbers and the

protocol),

• e2e stream: The byte-stream belonging to the

same source and destination IP addresses, and

• e2e session: We define an e2e session as a cluster

of bytes belonging to the same e2e stream, with

the following constraints: the delay between two
successive packets in an e2e session is always
less than a threshold, and the delay between

packets belonging to different e2e sessions is
greater than the threshold. For our analysis

and modeling, we set this threshold to 2 s. This

definition is motivated by [2], where the authors

identify off-periods in an e2e stream by looking

at time instants tP 2 s that does not contain

any packet. An e2e session can have packets

from many connections. We assume that the

session consists of several connections on the
same e2e path separated only by a time interval

caused by the transport and lower-layer proto-

cols and the network, not the user. Sessions

are separated by longer, human ‘‘think’’ times.

In this section, we show that the most appropri-

ate mapping for an on-period is the e2e session.

In order to identify the most appropriate
on-period, we first consider the independence



Table 1

Changes in the Hurst parameter when we shuffle the on-periods

for connections, e2e streams, and e2e sessions

Trace Auck (H) Bell (H)

Real trace 0.82 0.79

Shuffled connections 0.66 0.68

Shuffled e2e streams 0.82 0.78

Shuffled e2e sessions 0.82 0.78

Clearly, the connections have correlated start times, as the

reduction in the Hurst parameter reveals.

Table 2

Changes in the standard deviation when we average out

(flatten) the on-periods for connections, e2e streams, and e2e

sessions

Trace Auck (r/m) Bell (r/m)
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property of the on–off sources. In the on–off

model, the sources are assumed to be independent,

and the correlation in the aggregate traffic comes

only from the distribution of the on-times.3

Further, the on and off periods are independent
(Table 1).

To check the independence assumption, we

shuffle the start-times of the presumed on-periods

and check whether the modified trace has the same

correlation structure. The start-times of the groups

of bytes are changed and assigned a random vari-

able chosen uniformly over the duration of the

trace, with wrap-around if the on-period extends
beyond the end of trace. Shuffling eliminates any

correlation in the trace that appears due to corre-

lated start times of the sources.4

Table 4 shows how shuffling the components of

the trace affects the Hurst parameter of the aggre-

gate traffic. If the start times were independent,

then the resulting trace would have the same Hurst

parameter. In our analysis, we use the variance-
time plot to infer the Hurst parameter. From

Table 4, we note that the connections have corre-

lated start times whereas the e2e streams and e2e

sessions do not. This correlation could come from

the fact that each Web session can spawn many

connections whose start times are close together.

This indicates that the connections are not good

candidates for on-periods.
Let us consider the choice of e2e streams as on-

periods. An on-period that is based on an e2e

stream will also cover large time durations when

no packets were transmitted between the constitu-

ent e2e sessions. This results in a reduced instanta-

neous rate for the on-period and reduces the

variance of the aggregate trace sharply. To illus-

trate this point, we average out the bytes in each
on-period, spreading them evenly across the dura-

tion of the on-period. Table 2 shows the results of

such a modification. Clearly, an e2e stream is not a

good choice for the on-period, since the variance

(as depicted by the ratio r/m, where r is the stan-
3 LRD in the aggregate traffic can be generated using heavy-

tailed off-periods as well.
4 Shuffling also removes any correlation in the byte arrival

process due to sources sharing a common bottleneck link.

However, we ignore the effect of this phenomenon in this paper.
dard deviation of the aggregate trace and m is the

mean) of the resulting trace is drastically reduced.

Let us consider the choice of e2e sessions as on-

periods. The resulting variance (as seen from Table

2) for the e2e session more closely matches the real

trace, and hence is most appropriate to model the

on-period. In the remainder of this paper, we as-

sume that the on-period corresponds to an e2e
session.

For an on-period we have file size = rate · dura-

tion. Hence we have only two degrees of freedom;

once we specify two of the parameters, the third is

automatically determined. We now consider the

likely independent parameters for alpha and beta

connections.

Large file transfers via beta connections are of
long duration due to the ceiling on the transmis-

sion rate (as shown in Fig. 2). Hence the user�s la-
tency tolerance creates a bias against large file

transfers. For alpha connections, the latency is

usually small for most file sizes, and hence there

is no user-bias against large files. Hence we argue

that for the beta component, the key parameters

are the rate (network bottleneck rate) and the
duration (determined by the user behavior); the file

size is set by the available rate and the duration.
Real trace 0.38 0.72

Flattened connections 0.21 0.49

Flattened e2e streams 0.095 0.22

Flattened e2e sessions 0.32 0.65

It can be seen that the resulting standard deviation for the e2e

sessions matches that of the resulting trace best.



S. Sarvotham et al. / Computer Networks 48 (2005) 335–350 341
On the other hand, it is more appropriate to model

the alpha component using independent file-size

and the rate, since the duration is not of concern

to users, as it is usually small. The duration gets

set by the other two parameters.
We now strengthen the above arguments by

performing a pairwise correlation analysis on the

file size, duration, and rate of the connections for

some real world traffic data sets.
5. Joint distributions of size, rate, and duration

For our analysis and modeling, we use two real

traffic traces—the Auck trace and the Bell trace.

Please refer to the Appendix A for a summary of

the traces.

First we consider the alpha component. Figs. 3

and 4 show pairwise scatter-plots of the size, rate

and the duration of the sessions in a log scale (we

use the log scale because each of these parameters
spans several orders of magnitude). For this analy-

sis, we ignore sessions with duration less than

100 ms, since the rate of a very small session is ill-

defined and problematic to handle (see also [11]).

As observed in previous work [11,12], there exists

a strong correlation between the rate and the ses-

sion-size for the overall traffic. This indicates that

the users choose the file sizes to download based
on the speed of the connection. However, the corre-

lation between session-size and the rate is greatly re-

duced when we look only at the alpha sessions.

Hence we conclude that for the alpha sessions, the

download time, which is small, is not a significant

factor that limits a user�s behavior. In other words,

for alpha sessions, we may assume that the session

rate and the session size are independent for the
purpose of simplified modeling and synthesis.

Next we consider the beta component and the

overall traffic. Looking at Table 4, we note that

at first sight, all of the three parameters are corre-

lated pairwise. We argue that the correlation be-

tween the rate and duration comes from the

constraint that the packet sizes are at least 40 bytes

long (consisting of the TCP/UDP and IP headers).
Looking at the scatter-plots of the rate and dura-

tion, we see that there exist no samples in the

low-rate, low-duration regime (lower triangle).
This is because the minimum session size is 80 bytes

(corresponding to a session of just two minimum-

sized packets), and hence a combination of low rate

and low duration cannot occur together in reality.

In a gedanken experiment we could lump ses-
sions with duration less than 2 s together into a

third component. This component would consti-

tute simple noise due to the small size of these ses-

sions. For the Bell trace, this component would

contribute only 23% of the bytes of the traffic

(18% for the Auck trace). More importantly, the

remaining beta component would show a convinc-

ingly small correlation between rate and duration
of �0.12 for the Bell trace (�0.05 for the Auck

trace). We argue that the concepts of rate and

duration do not apply to these small sessions and

that some other mechanism than user behavior

shapes them. However modeling this part of traffic

as another component adds undesirable model

complexity; incorporating them into the beta com-

ponent appears to be appropriate within our de-
sired model accuracy as our simulations show.

We leave the study of the parameters of small ses-

sions for future work.

To summarize, our observations are consistent

with the view that for beta sessions the size of its

connections depends on the bottleneck bandwidth

(rate) and the duration of the download that the

user is willing to tolerate. In our synthesis, we will
thus assume that the rate and duration are indepen-

dent for the beta sessions. For alpha sessions, we

assume that the file size and rate are independent.
6. The alpha-beta on–off model

We now exploit the results of the last section to
define a new two-component on–off model aligned

with the alpha-beta analysis. We call our model

the alpha-beta on–off model.

6.1. Alpha-beta separation

First we describe the procedure to classify con-

nections as alpha and beta. The alpha-beta prin-
ciple is that a few outliers (in terms of sessions

with large peak-rates) are responsible for a very

visible phenomenon, namely non-Gaussianity of



Fig. 3. Scatter-plot depicting the pairwise joint distribution of session rate, duration, and size for the Auck trace.
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the traffic trace at certain small scales. There are

many possible schemes to define alpha sessions

and separate these outliers.

As described in Section 3, in one such scheme we

compute the maximum contribution of bytes from

every session in a time window of T seconds. We

classify as alpha sessions those that contribute more
bytes than the alpha-threshold in any time window

of T seconds. The remaining sessions are classified

as beta. This scheme relies on the peak-rate of the

sessions. A second, robust separation scheme sets
the alpha-threshold to remove the sessions with

largest peak-rates until the distribution of the

peak-rates of the remaining sessions (excluding mice

sessions [10]) resembles a Gaussian distribution. In

many experiments, we have found that the results

are not sensitive to the exact alpha-threshold.

6.2. Alpha-beta modeling

Alpha-beta on–off model consists of the sum of

two on–off models: one for the alpha component



Fig. 4. Scatter-plot depicting the pairwise joint distribution of session rate, duration and size for the Bell trace.

Table 4

Correlation coefficient between the on–off parameters (Bell

trace)

Component Duration

and rate

Duration

and size

Size

and rate

Total �0.46 0.29 0.72

Alpha �0.61 0.73 0.10

Beta �0.46 0.28 0.71

Table 3

Correlation coefficient between the on–off parameters (Auck

trace)

Component Duration

and rate

Duration

and size

Size

and rate

Total �0.11 0.52 0.79

Alpha �0.61 0.87 �0.13

Beta �0.12 0.52 0.78
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Table 5

Independent parameters in the schemes to generate traffic

Scheme name Independent parameters

Scheme RD Rate and duration

Scheme SD Size and duration

Scheme SR Size and rate

Table 6

Auck data synthesis summary

Time series under

consideration

Ratio

r/mean

Hurst

parameter H

Kurtosis

Real total 0.38 0.82 5.79

Real alpha 1.05 0.79 15.07

Real beta 0.36 0.85 2.997

Scheme RD total 0.38 0.78 4.85

Scheme RD alpha 0.79 0.83 4.96

Scheme RD beta 0.36 0.78 4.24

Scheme SD total 3.64 0.51 1691

Scheme SD alpha 10.34 0.58 1981

Scheme SD beta 2.41 0.52 742

Scheme SR total 0.19 0.83 11.20

Scheme SR alpha 0.81 0.83 7.61

Scheme SR beta 0.19 0.84 7.00

Alpha-beta on–off model

(RD beta + SR alpha)

0.42 0.83 5.80

The table shows the comparison of the statistics of the real and

synthetic traces at 500 ms timescale.
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and one for the beta component. Interestingly, the

three controlling parameters duration = file size/

rate are used in different combinations for each

of the two models.

We model the alpha sessions as having on-peri-
ods with independent size and rate. Random sizes

and rates are chosen independently from their

respective empirical marginal distributions in the

alpha connections of the real trace. The duration

of the on-period is determined by duration = file

size/rate.

We model the beta sessions as having on-peri-

ods with independent duration and rate. Random
durations and rates are chosen independently from

their respective empirical marginal distributions

in the beta connections of the real trace. The file

size of the on-period is determined by file size =

rate · duration.

We choose the number of alpha and beta ses-

sions to match that of the real trace. The starting

times of the alpha and beta on-periods are chosen
uniformly over the duration of the trace, with

wrap-around if the on-period exceeds the total

time of the trace. The synthetic alpha trace is the

superposition of the alpha on-periods and the syn-

thetic beta trace is the superposition of the beta

on-periods. The total trace is the sum of these

two superpositions.

6.3. Justification

We now justify our choices for the controlling

parameters of the alpha and beta on–off models

by matching real traffic traces.

For each of the Bell and Auck traces, we first

computed the (1-d) empirical distribution of the

log of the three parameters size, rate and duration
for each of the three traffic components: alpha,

beta and the total traffic. (We used histograms of

2000 bins; the results were not sensitive to the ex-

act number.) We synthesized on-periods by choos-

ing two of the parameters as independent from

among the three possible schemes: scheme RD as-

sumes that the rate and the duration are indepen-

dent; scheme SD assumes that the size and
duration are independent; and scheme SR assumes

that the size and rate are independent. The three

schemes are summarized in Table 5. We then
superpose these on-periods to generate the syn-

thetic traffic. We choose the number of on-periods

in the synthesis to be exactly the same as the num-

ber of e2e sessions in the real trace.

The results of the synthesis are summarized in
Tables 6 and 7. The synthetic traces for the Bell

trace are shown in Fig. 5 for a visual comparison.

Note that the beta component of traffic is well

matched by scheme RD and the alpha component

by Scheme SR, as predicted. Also it is clear that

none of the three schemes match the total traffic,

which is not surprising when we note that the three

parameters are mutually dependent for the overall
trace (Tables 3 and 4). That is, no single-compo-

nent on–off model is capable of matching the total

traffic. However, the alpha-beta on–off model

matches the real trace well.

Fig. 6 shows the synthesized total traffic using

the alpha-beta on–off model. Here we synthesize

the total traffic as the sum of the alpha component

generated using scheme SR and the beta compo-



Table 7

Bell data synthesis summary

Time series under

consideration

Ratio

r/mean

Hurst

parameter H

Kurtosis

Real total 0.71 0.79 10.57

Real alpha 2.06 0.81 15.74

Real beta 0.47 0.71 3.96

Scheme RD total 0.44 0.84 4.81

Scheme RD alpha 1.04 0.86 8.26

Scheme RD beta 0.44 0.85 4.73

Scheme SD total 4.58 0.49 1793

Scheme SD alpha 11.65 0.53 3476

Scheme SD beta 3.02 0.51 608

Scheme SR total 0.40 0.73 14.93

Scheme SR alpha 1.33 0.82 14.89

Scheme SR beta 0.43 0.66 16.94

Alpha–beta on–off model

(RD beta + SR alpha)

0.55 0.84 10.43

The table shows the comparison of the statistics of the real and

synthetic traces at 500 ms timescale.

S. Sarvotham et al. / Computer Networks 48 (2005) 335–350 345
nent generated by scheme RD. Observe that the

synthetic trace generated by this model visually

resembles the real trace. The closeness of the energy

plots shown in Fig. 8 for the real and synthetic trace

further indicate that the synthetic trace is a good fit.
Another quantitative metric to compare the real

and synthesized traces is the queue length distribu-

tion as shown in Fig. 7. In this analysis, we feed

the trace into an infinite queue with service rate

equal to the link capacity of the link where traffic

was recorded (9 Mbps for the Bell trace) Fig.

7(a) shows the complementary queue distribution

of the real trace and the synthetic trace generated
by our alpha-beta on–off model. The synthetic

trace based on the alpha-beta on–off model is gen-

erated by superposing the alpha component gener-

ated by scheme SR and the beta component

generated by scheme RD (same as the trace is

shown in Fig. 6(b)). Note that the synthetic trace

from our model matches the queuing behavior of

the real trace well, with increasing error for larger
queue sizes. However, when we model the total

traffic using a single-component on–off model with

the schemes RD, SD and SR, none of the synthetic

traces match the queuing behavior of the real

trace, as seen from Fig. 7(b). This convincingly

shows the value of alpha-beta decomposition,

and the importance of treating the alpha and beta

components separately in the on–off model.
7. Discussion

The implications of our alpha-beta on–off

model to congestion control and what-if-scenarios

are relevant and even somewhat surprising.
The network-driven user. Let us start by drawing

a telling relationship between network and the user

layer. Our evidence suggests separating user

behavior into two regimes. We base the discussion

on the three basic parameters of file size, sending

rate, and duration.

The beta regime, on the one hand, is character-

ized in the network layer by rate-limitation, which
results in the user layer as patience being the

apparent parameter ruling behavior. For the net-

work-user-driven on–off model this translates into

approximating the joint distribution of file, size

and rate as being characterized by independent

rate and duration.

The alpha regime, on the other hand, corre-

sponds in the network layer to high available
bandwidth, which translates in the user layer into

a free choice of file transfers according to interest.

For the model this means that file size and rate are

independent.

What-if? scenarios. In earlier work [9], we

showed that most of the alpha sessions come from

short RTT connections. By looking at the histo-

gram of the connection RTT, a network operator
can immediately comment on the relative strengths

of the alpha and beta components. The relation-

ship between the connection RTTs and the

strength of the alpha component has some impor-

tant implications when we consider Content Dis-

tribution Networks (CDNs). CDNs change the

RTT distributions of sessions, and we expect more

flows to have shorter RTTs. In related earlier work
[4], we showed that alpha connections tend to

build up large queues. This points to a future need

for a mechanism at routers (AQM) to detect and

control alpha connections so that other connec-

tions are not unduly affected. This is particularly

relevant as we expect more alpha flows in the fu-

ture, due to higher available bandwidth to users,

thanks to digital subscriber line (DSL), cable
modem, and fiber-to-the-home technologies.

Another interesting aspect is the potential of al-

pha-DOS attacks where hosts close to a server
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Fig. 5. Synthesis of total, beta and alpha components of the Bell trace. The first row depicts the real trace. The plots in the remaining

rows show the synthetic traces obtained by using Scheme RD, Scheme SD and Scheme SR. Note that the total traffic is not captured

well by any of the schemes. The beta traffic is captured well by scheme RD, while Scheme SR captures the alpha traffic well. This

observation is reinforced in the Table 7.
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Fig. 7. Figure (a) shows the complementary queue distribution of the real trace and the synthetic trace that is generated using our

alpha-beta on–off model. Note that the synthetic trace matches the queuing behavior of the real trace well. Figure (b) shows the

complementary queue distribution of the real trace and the synthetic traces generated by schemes RD, SD and SR on the real trace,

without doing an alpha-beta decomposition. Note that none of the three synthetic traces in (b) match the queuing behavior of the real

trace accurately. This reveals the importance of the alpha-beta separation and the need to treat alpha and beta components differently

for the on–off model.
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Fig. 6. Synthesis of total traffic using our alpha-beta on–off model. The alpha component is generated using scheme SR and the beta

component is generated with scheme RD. The alpha and beta components generated are then superposed. The figures show that the

synthetic trace resembles the real trace. Note that none of the single-component on–off schemes shown in Fig. 5 match the total traffic

visually.
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leverage small RTTs to drain the network re-

sources (bandwidth), depriving other clients of ser-

vice. One way to detect such an attack would be to

identify transfers in the alpha regime that persist

beyond the length of time a typical human user

would tolerate.

Effectiveness of congestion control. Among the

two components, only the beta component ap-
pears to be effectively controlled by TCP. Alpha

connections profit greatly from small RTTs to
obtain large bandwidth. Operating as it does with

small TCP windows, loss-based congestion control

does not restrict alpha connection since they re-

cover much more quickly to drops than the average

beta user. This calls for alternative methods of

congestion control than that provided by TCP.

Predicting traffic patterns in a high-speed TCP

environment. An interesting question is to predict
a priori the expected volumes of alpha and

beta components of traffic in a high speed TCP
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environment. Many high-speed TCP schemes have

been proposed recently to adapt to high band-

width-delay product environments such as HSTCP

[13], STCP [14], XCP [15], FAST-TCP [16] and BI-

TCP [17]. For TCP in a high bandwidth-delay envi-

ronment, we predict that the strengths of the alpha
and beta components will depend on TCP�s bias to-
ward short RTT connections. In the current TCP-

Reno, alpha connections cannot arise from large

RTT connections because they lose out to short

RTT flows due to TCP bias. [17] presents a detailed

analysis of the RTT bias for several high-speed

TCP schemes. Based on these results we expect that

the alpha-beta differentiation between flows will be
more pronounced for STCP and HSTCP (which

have large RTT bias) than for BI-TCP (which has

RTT bias comparable to TCP-Reno).
8. Related work

Zhang et al. [11] have investigated the origins of
Internet flow rates, and studied their relationship

with the size and duration of the flow. They report

the correlation between the three parameters (for

the overall set of connections), and their results

are consistent with our findings for the Auck and

Bell traces. In particular, they observe a strong

correlation between size and rate. The authors

conclude that the users choose the size of their
transfer based strongly on the available

bandwidth, which is in agreement with what we

see for beta sessions (recall that beta sessions con-

stitute the bulk of the traffic load).

Lan et al. [12] have explained the strong corre-
lation between the file size and the rate as arising

due to protocol interactions for small and medium

flows. Their work also analyzes the relationships

between different classifications of network traffic

connections, such as elephant–mice [10], tortoise–

dragonfly [18], and alpha-beta [4].

Campos et al. [19] have applied multivariate ex-

treme value theory to show that the file size and
throughput (the inferred rate at which the file is

transferred) exhibit extremal independence. In

other words, for large file transfers, the throughput

tends to be more closely related to time, and essen-

tially independent of response size. This result

agrees with our analysis that for alpha sessions,

the rate and file size are essentially independent

(note that the alpha flows have both large file sizes
and high rates). The authors conclude that a signif-

icant percentage of the longest durations are due to

low throughput rates rather than large file transfers.

In [20], Campos et al. address and study the het-

erogeneity of Internet traffic by combining an ab-

stract model of application-level communication

with statistical cluster analysis. Their model cap-

tures the pattern of data exchange in an abstract
manner for a wide range of applications. The main

idea is to cluster the connections together that are

dependent if they come from the same session.
9. Conclusions and ongoing work

We have demonstrated the impact of the rela-
tionship between the session parameters (duration,

rate and size) on network traffic. The user-behavior

(how much delay a user is willing to tolerate) and

the network characteristics (bottleneck bandwidth)

determine the relationship between the parameters.

The beta component of traffic is influenced by the

rate and duration, since the beta sessions are rate-

limited and users cannot tolerate large durations
in download times. The alpha component is gov-

erned primarily by independent session size and

rate, since its duration is negligible. Based on these
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observations we have proposed the alpha-beta

on–off model for Internet traffic. The synthetic traf-

fic generated using our model captures the charac-

teristics of the real trace in terms of the queuing

behavior and the energy plots.
For future work, we plan to validate our alpha-

beta on–off model on a wider variety of traces. We

will perform theoretical analysis on the distribu-

tion of parameters using techniques such as Mas-

sey and Whitt�s generalization of Taylor�s
theorem to probability distributions [21]. We are

also working on finding parametric models for

the alpha and beta components.
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Appendix A. Real traffic traces

The alpha-beta on–off model developed in this

paper has been successfully tested on many real

network traffic traces. However, for the purpose
of illustration, we present our analysis on two rep-

resentative traces. The summary of the traces are

given in Table 8.

The first set of traces were recorded at the Uni-

versity of Auckland [22]. The traces are part of a

large collection of GPS synchronized IP header

traces captured with a DAG2 system at the
Table 8

Network trace files used in this paper

Dataset Auck Bell

Filename 19991207-125019-0 20020520-110000

Link bandwidth 2 Mbps 9 Mbps

Duration (s) 3182 3600

Number of packets 1,000,000 2,229,864

Number of bytes 571 MB 870 MB

Number of

connections

64,090 187,310
University of Auckland Internet uplink by the

WAND (Waikato Applied Network Dynamics)

research group, which is based in the University

of Waikato Computer Science Department. The

University of Auckland ITSS department operates
an OC3 ATM link to carry a wide variety of ser-

vices off the main campus. A single ATM channel

is used to connect the university to the global

Internet, and since it is the only connection, all

packets for all external connections pass the mea-

surement point. The connection has a packet peak

rate of 2 Mbps in each direction.

The second trace is from the Bell Labs-I dataset
[23], from a joint project between NLANR PMA

and the Internet Traffic Research group lead by

Bill Cleveland. The data set was collected with a

Dag3.2E 10/100 MBit/s Ethernet card at the out-

side of the firewall servicing researchers at Bell

Labs via a 9 Mbps link to the Internet.
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