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A minimum distance criterion is automatically robust when fitting a parametric model.
Such an approach may be used to identify multivariate outliers and to fit multivariate param-
eters, including regression.

However, if a minimum distance criterion is chosen that is not dimensionless, then care
must be exercised in scaling the criterion to be used in the nonlinear optimization code. In this
paper, we illustrate the algorithms and describe how dimension limits the application.

Introduction

The study of spatial data has an important role in the mission of governmental entities.
The topic has drawn the interest of statisticians (Cressie, 1991) and geographers (MacEachren,
1995), among others. One of the many challenges in mapping is a better understanding of
how many variables are related spatially to variables of interest. One classical dataset much
studied is the Boston housing data (Harrison et al, 1978); the goal is to predict median housing
prices, but much of the data does not fit a single multivariate model. Robust methods are often
applied to such data, but are iterative and sometimes difficult to interpret.

We have introduced an alternative multivariate regression fitting algorithm, called L2E
(Scott, 2001). In place of a maximum likelihood or a least-squares criterion, L2E attempts
to estimate parameters so the shape of the residuals is as close to Normal as possible. Why
does this alternative criterion help? If the data contain a cluster of “bad” data fitted by
least-squares, the residuals will not be Normal and may be skewed, for example. Regression
diagnostic plots must be carefully screened and interpreted in order to identify and then correct
these practical problems. Making the residuals look Normal will avoid such difficult diagnostic
steps. Instead, 90% of the residuals will look Normal (with a mean of 0), and the 10% of
residuals corresponding to the bad data will be clearly shown.

In the case of spatial data, another diagnostic is available. Namely, the values of the
residuals may be plotted spatially in order to better understand the nature of the “bad” data.
Of course, the bad data may in fact be the most interesting data. A simple estimation example
is presented.

Fitting Multivariate Regressions by L2E

Given a variable of interest, y, and a number of covariates, (21, o, ..., ), collected over
a number of spatial units (census tracks, for example), we seek to model y as a simple function
of the predictors: §j(x) = 7. Given estimates of the f3}s, a residual for the i-th case would be
computed as ¢ = vy; — BT x;. If there was a cluster of bad data, then the residuals would not
look Normal and be centered at 0.

With the L2E, least-squares is replaced by another criterion, which can be optimized
using standard software, for example, nlmin in the Splus package. The criterion to minimize is



simply
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where o2 is the variance of the residuals and ¢(z|u, 0?) is the Normal density.

The new exciting extension which we will illustrate was introduced by Scott and Szewcyzk
(2003). Specifically, instead of modeling the residuals as Normal, N (0, 02), we add an additional
weight parameter, w, and use the residual model w- N (0, ?). What this unusual model is really
doing can be made clearer by the following observation. If we must deal with a “bad” data
cluster, then the residual plot will have a separate component for that cluster. In other words,
we believe the residual density is actually a mixture of two components, one centered at 0
(the good data), and a second elsewhere (and of unknown shape). The “magic” of the L2E
algorithm, as described in Scott and Szewczyk (2001), is that we can use L2E to estimate only

the major mixture component. The criterion given above is modified only slightly to:
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The optimization is over the parameters w and o, as well as the parameters {fy, 81, -- -, Bp}s
which are used implicitly to recompute the estimated residuals, {¢;}.

The estimated value of the weight, w, indicates the amount of the data that the L2E
algorithm believes is being fitted by the multivariate regression model. Thus, when all works
well, the investigator simultaneously obtains a model fit that is very good as though only the
“good” data were fitted, as well as an explicit estimate of the fraction of “bad” data. By sorting
on the magnitude of the fitted residuals, the “suspect” data can clearly be identified.

Application to Boston Housing Data

The Boston housing data were originally modeled to determine if levels of air pollution
appeared to be correlated with housing prices. Data were assembled for the 506 census tracts
in greater Boston in the early 1970’s. The 13 predictor variables included information on per
capita crime rates, proportion of residential land zoned for large lots, proportion of non-retail
business acres, average age and number of rooms per dwelling, full-value property-tax rates,
and pupil-teacher ratios, in addition to the nitric oxides concentration (the pollution variable).
Dummy variables were added to account for spatial correlation, for example, adjacency to the
Charles River, distances to five Boston employment centers, and accessibility to radial highways.

In the talk, we will examine the residuals and their display on maps, using the ArcView
program. The interesting fact is that almost 15% of the census tracks are estimated to be
outliers by L2E.

Discussion and Future Directions

The digital government work of our research team has focused on a number of statistical
tools and techniques which can handle many of challenging real situations. In this paper, we
have examined the all-too-common problem of statistical models which fit a large fraction of
the data, but not all of the data. The common practice of iteratively trying to figure out
which data points are the problematic ones is very difficult and, in our experience, often leads
to unnecessary failure. This is not too surprising as the number of possible remedies with 13
predictor variables is almost unlimited, and both a novice and experienced investigator may
not be able to find the correct combination of fixes.

In contrast, our new fitting technique goes straight to the heart of the issue, finding the
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easier with this approach. The generality of our approach will become clearer, as regression is
the fundamental model for many if not most data analyses.
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RESUME

Nous etudions un critére pour l’estimation des fonctions de densité et régression. Ils sont
robuste. Quelques examples sont presenté.



