Probability Density Estimation

Associated with each random variable, X, measured
during an experiment is the cumulative distribution
function (cdf), I'(z). The value of the cdf at X =z
is the probability that X < z. Features in a set
of random data may be computed analytically if
the cumulative distribution function is known. The
probability that a random sample falls in an inter-
val (a,b) may be computed as I'(b) — F'(a). This
formula assumes the values of X are continuous.
Discrete random variables taking on only a few val-
ues are easy to handle, thus, this article focuses on
continuous random variables with at least an inter-
val scale.

The same information may be obtained from
the probability density function (pdf), f(z), which
equals Pr(X = x) if X takes on discrete values, or
the derivative of F'(z) if X is continuous. If either
F(z) or f(z) is known, then any quantity of interest
such as the variance may be computed analytically
or numerically. Otherwise, such quantities must
be estimated using a random sample x1, x5, . .
The relative merits of estimating F'(z) versus f(z)
are an important part of this article.
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Density estimation takes two distinct forms—
parametric and nonparametric—depending on prior
knowledge of the parametric form of the density. If
the parametric form f(ac|§) is known up to the p pa-
rameters § = (61,...,0,), then the parameters may
be estimated efficiently by maximum likelihood or
Bayesian algorithms. When little is known of the
parametric form, nonparametric techniques are ap-
propriate. The most commonly used estimators are
the histogram and kernel methods, as discussed be-
low.

1 Histograms and CDF’s

Grouping and counting the relative frequency of
data to form a histogram may be taught at the
beginning of every statistics course, but the con-
cept seems to have emerged only in 1662 when
John Graunt studied the Bills of Mortality and con-
structed a crude life table of the age of death during
those times of plague (Westergaard 1968). Today

the histogram and its close relative, the stem-and-
leaf plot, provide the most important tools for ex-
ploring and representing structure in a set of data.
Studying the shape of a well-constructed histogram
can verify an assumption of normality, or reveal de-
partures from normality such as skewness, kurtosis,
or multiple modes. The recent study of the theo-
retical properties of histograms has led to concrete
methods for computing well-constructed figures as
discussed below.

With only a random sample of data, the cdf may
be estimated by the empirical cumulative distribu-
tion function (ecdf), denoted by F),(z). The value
of the ecdf at z is the fraction of the sample with
values less than or equal to z, that is, {#z; < z}.
Now the probability any one of the z; is less than z
is given by the true cdf at z. Hence, on average, the
value of F,(z) is exactly F'(z), and F,(z) is an un-
biased estimator of F'(z). The inequality {X; < z}
is a Binomial random variable, so that the variance
of F,(z) may be computed as F(z)(1 — F(z))/n.
In fact, there is no other unbiased estimator with
smaller variance.

The graph of the empirical cdf looks like a stair-
case function. Figure 1 displays the ecdf of the
treatment times 33 physicians estimated when pre-
sented with a hypothetical patient suffering from
extreme migraine headaches (Hebl 2000). The dot-
ted line is the cdf of the fitted normal density
N (31.3,9.9?), which appears to fit reasonably well.
Figure 2 displays a histogram of the same data,
which does not appear to be normal after all. Social
scientists often are taught to favor the ecdf over the
histogram, but in fact aside from computing proba-
bilities, the ecdf is not well-suited for easily under-
standing data.

The probability density function, f(z), carries
the same information as the cdf. Since the deriva-
tive of the empirical cdf F,,(z) is not well-defined,
estimators that rely on grouping have been devised.
A convenient interval, (@, b), containing the data is
chosen, and subdivided into m “bins” of equal width
h = (b—a)/m. The value h is called the bin width
(and is often called the smoothing parameter). A
“well-constructed” histogram must specify appro-
priate values for a, b, h, and m. Given such pa-
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Figure 1: Empirical cumulative distribution func-
tion of physicians’ estimated treatment times for a

patient suffering migrane headaches. The dotted
line is the cdf of the normal fit.

rameters, the number of samples falling into each
of the m bins is tallied. Label the m bin counts
V1,V2, ..., Uy from left to right. If the interval (a, b)
contains all the samples, then Y ;—, vy = n. A fre-
quency histogram is simply a plot of the bin counts,
as in Figure 2. Although the values are all multiples
of 5 minutes, the data may be treated as continuous.
However, the bin width should only be a multiple
of 5 and care should be exercised to choose a and
h so that no data points fall where two bins adjoin.
Here, @ = 2.5, b = 57.5, and h = 5. The histogram
suggests a departure from normality in the form of
3 modes. Re-examine the ecdf in Figure 1 and try
to identify the same structure.

A true probability density is a nonnegative func-
tion that integrates (sums) to 1. Hence, the density
histogram is a simple normalization of the frequency
histogram in the kt" bin:
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The normalization is important when the data are
heavily skewed and unequal bin widths are con-
structed. In such cases, the interval (a,b) is parti-
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Figure 2: Frequency histogram of treatment times.

tioned into m bins of width Ay, ho, ..., h,. The bin
counts vy, s, ..., U, should not be plotted as they
are not relatively proportional to the true density
histogram, which is now given by f(z) = v/ (nhy)
in the k" bin. Figure 3 displays a density histogram
of the distances of the 70 home runs hit by Mark
McGwire during his record-setting 1998 American
A bin width of 20 feet was cho-
sen, and then several adjacent bins were collapsed
to make the histogram look unimodal. The long
right tail reflects the booming home runs McGwire
is known for.

baseball season.

2 Bin Width Construction

Rules for determining the number of bins were first
considered by Sturges in 1926. Such rules are of-
ten designed for normal data, which occur often
in practice. Sturges observed that the mt" row of

Pascal’s triangle, which contains the combinatorial
coefficients (mo_l), (ml_l), - (2:}), when plotted,
appears as an ideal frequency histogram of nor-
mal data. (This is a consequence of the Central
Limit Theorem for large m.) The sum of these

“bin counts” is 2! by the Binomial expansion of
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Figure 3: Density histogram of the distances of
Mark McGwire’s 70 home runs in the 1998 season.

(14 1)™~!. Solving the equation n = 2™~! for the
number of bins, we obtain Sturges’ rule

m=14logyn.

This rule is widely applied in computer software.

The modern study of histograms began in Scott
(1979) and Freedman and Diaconis (1981). The op-
timization problem formulated was to find the bin
width A to make the average value of the “distance”
[[f(z) = f(2)]?dx as small as possible. The solution
for the best bin width is

h* = [7] / n—1/3

J f'(w)?dx '
While the integral of the derivative of the unknown
density is required to use this formula, two useful
applications are available. First, the normal refer-
ence rule gives

h* = 3.50n" 13,

since the value of the integral for a normal density
is (4/ma3)~L. The second application was given by
Terrell and Scott (1985) who searched for the “eas-
iest” smooth density (which excludes the uniform

density) and found that the number of bins in a
density should always exceed v/2n or that the bin
width should always be less than

h* < 3.730n" /3.

These choices are called oversmoothed rules, as the
optimal choices will never be more extreme for other
less smooth densities. Notice that the normal refer-
ence rule is very close to the upper bound given by
the oversmoothed rule. For the McGwire data, the
oversmoothed rule gives h* < 42’

More sophisticated algorithms for estimating a
good bin width for a particular data set are de-
scribed in Scott (1992) and Wand (1997). For ex-
ample, a cross-validation algorithm (Rudemo 1982)
that attempts to minimize the error distance di-
rectly leads to the following criterion:

2 n+1 n
h) = -
CV(R) (n—=1)h (n-1) thZVk

The bin counts are computed for a selection of bin
widths (and bin origins), the criterion computed,
and the minimizer chosen, subject to the over-
smoothed bound. The criterion tends to be quite
noisy and Wand (1997) describes alternative plug-
in formulae that can be more stable.

All of these rules give bin widths which shrink
at the rate n~'/? and give many more bins than
Sturges’ rule. In particular, most computer pro-
grams give histograms which are oversmoothed. The
default values should be overridden, especially for
large datasets. Similarly, the error of the best his-
togram decreases to zero at the rate n=2/3, which

~4/5 45 described below. How-

can be improved to n
ever, the histogram remains a powerful and intuitive

choice for density estimation and presentation.

3 Advanced Algorithms

Density estimators with smaller errors are contin-
uous functions themselves.
mator is the frequency polygon, which connects the
midpoints of a histogram. A separate error theory
exists. For example, the oversmoothed bin width

The easiest such esti-



for a histogram from which the frequency polygon
is drawn is given by

h* < 2.330n~1/%

Note that this bin width is wider than the rules for
the histogram alone.

Many other estimators exist, based on splines,
wavelets, Fourier series, or local likelihood, but all
are closely related to the kernel estimator of Rosen-
blatt (1956) and Parzen (1962), which is described
here. The kernel can be any probability density
function, but the normal density is a common and
recommended choice. Here the smoothing parame-
ter h is the standard deviation of the normal kernel.
If the normal density N(u,0?) at a point z is de-
noted by ¢(z|u, o), then the kernel estimator is

1
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This form shows that the kernel estimator is a mix-

§

ture of normal densities which are located at the
data points. The oversmoothed smoothing param-
eter value is

h* < 1.14on~ /5.

An example is given below.

4 Visualization

The primary uses of density estimation are to dis-
play the structure in a set of data and to compare
two sets of data. The histogram is adequate for the
first task, but overlaying two histograms for com-
parison is difficult to interpret. The continuity and
improved error properties of the kernel estimators
excel for this purpose.

In the great home run race of 1998, Sammy Sosa
finished second with 66 home runs. Figure 4 dis-
plays the empirical cdf’s of the distances for the
two home run kings (Keating and Scott 1999). This
graph clearly shows that McGwire hits longer home
runs than Sosa at every distance. In Figure 5, ker-
nel estimates of the McGwire and Sosa data with
h = 10 are overlaid. The possible structure in these
data is reinforced by the similarity of the two den-
sities. Each has two primary modes at 370 and 425

feet, with smaller feature around 475 feet. In ad-
dition, McGwire’s density clearly shows the right
tail of his longest homers. In contrast, the modes
in the original histogram of Figure 3 did not ap-
pear convincing, and were eliminated by locally ad-
justing the bin widths. The continuity of the ker-
nel and other estimators makes the assessment of
modes much easier.
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Figure 4: Empirical cumulative distribution func-
tions of the distances of Mark McGwire’s 70 (solid

line) and Sammy Sosa’s 66 (dotted line) home runs
in 1998.

5 Multivariate Densities

Histograms can be constructed in the bivariate
case and displayed in perspective, but cannot be
used to draw contour plots. Kernel methods are
well-suited for this purpose. Given a set of data
(z1,y1),-- -, (Zn, Yn), the bivariate normal kernel es-
timator is given by

i) = = 3 dlales, Holulyi, ).
i=1

A different smoothing parameter can be used in
each variable.
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Figure 5: Kernel density estimates of the distances
of Mark McGwire’s 70 (solid line) and Sammy
Sosa’s 66 (dotted line) home runs in the 1998 sea-
son. McGwire’s data are plotted below the horizon-
tal line and Sosa’s above.

For three- and four-dimensional data, the kernel
estimator can be used to prepare advanced visual-
ization renderings of the data. Scott (1992) pro-
vides an extension set of examples.

6 Other Materials

A number of other monographs exist that delve into
various aspects of nonparametric approaches. A
thorough survey of all topics by top researchers is
contained in Schimek (2000). Early works popu-
larizing these ideas include Tapia and Thompson
(1978) and Silverman (1986). Wand and Jones
(1995) and Simonoff (1996) focus on kernel meth-
ods. Fan and Gijbels (1996) and Loader (1999) fo-
cus on local polynomial methods. General smooth-
ing ideas are discussed by Hérdle (1991) and Bow-
man and Azzalini (1997). Many other excellent ref-
erences may be followed in these books.
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