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ABSTRACT: The likelihood function plays a central role in parametric and Bayesian
estimation, as well as in nonparametric function estimation via local polynomial modeling.
However, integrated square error has enjoyed a long tradition as the goodness-of-fit crite-
rion of choice in nonparametric density estimation. In this paper, we investigate the use of
integrated square error, or L, distance, as a theoretical and practical estimation tool for a
variety of parametric statistical models. We show that the asymptotic inefficiency of the
parameters estimated by minimizing the integrated square error or L, estimation (Lpk)
criterion versus the MLE is roughly that of the median versus the mean. We demonstrate
by example the well-known result that minimum distance estimators, including Lol are
inherently robust; however, LoF does not require specification of any tuning factors found
in robust likelihood algorithms. LpFE is particularly appropriate for analyzing massive data
sets where data cleaning is impractical and statistical efficiency is a secondary concern.
Setting up the Lok criterion is relatively simple even with some very complex model spec-
ifications. Specific problems studied in this paper include univariate density estimation,
mixture density estimation, multivariate regression estimation, and robust estimation of
the mean and covariance.
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1. INTRODUCTION

Some of the practical deficiencies of maximum likelihood estimation are the lack of resis-
tance to outliers and the general nonrobustness with respect to model misspecification.
On the other hand, the class of minimum distance estimators has been shown to have
excellent robustness properties (Beran, 1977; Donoho and Liu, 1988). Hellinger distance,
f [f(x)l/Z _ f(g;)l/Zrdx, and L, error, [ |f(;c) — f(z)| dz, have special attraction since
they are dimensionless. However, these distance measures are not immediately available
in practice, and certain approximations are typically encountered. For example, Beran
(1977) suggested finding the parameter value, § = é, that minimizes the Hellinger distance
between f(z]f) and a kernel density estimate, fh(;c) Brown and Hwang (1993) made a
similar proposal but with a histogram. Since f varies with the choice of kernel or histogram
smoothing parameter, a rule for determining A must be specified.

Parametric and nonparametric estimators seldom employ the same estimation criteria.
Parametric algorithms typically rely on maximum likelihood while nonparametric algo-
rithms favor the L, or integrated square error (ISE) criterion. However, the use of local
likelihood and local least squares in nonparametric estimation is growing in popularity (Fan
and Gijbels, 1996). The present study arose from a desire to understand the applicability
of the nonparametric criterion, ISE, to parametric problems.

Consider parametric estimation of the uniform density, U/(0,8), given a random sample
T1,...,2,. The maximum likelihood estimator (MLE) is 0 = T(n), the largest order statistic.
If alternative estimators of the form 6 = ¢ - T(n) are entertained, then ¢ = (n + 1)/n makes
0 unbiased, while ¢ = (n +2)/(n 4+ 1) minimizes mean square error. On the other hand,
Scott (1992) showed that ¢ = 2/("=1) minimizes the average ISE or mean integrated square

error (MISE), which is defined for a parametric estimator with true parameter § = 6, as

A

MISE(f) = E; / [/(2lf) — f(2]60)]” do:

note that 2/~ ~ 1 4 (n — 1)"'log2. All three estimators are slightly larger than
the MLE. This simple example highlights the most important advantage of the MLE,

namely its constructive nature. The other criteria were applied in only a one-dimensional



neighborhood of the MLE. Furthermore, in (other) regular cases, MLE’s generally enjoy
asymptotic optimality properties.

In this paper, a fully constructive parametric estimation algorithm is devised based upon
the integrated square error criterion. The ISE- or Ly-minimizing estimate is abbreviated
as LoF. Its robustness behavior is demonstrated by an example and through the induced
M-estimator. Finally, it is shown how the basic density estimation framework may be

extended to estimation in general statistical models.
2. MOTIVATION

The process of building useful models invokes a sequence of steps involving problem defi-
nition, estimation, criticism, reformulation and corrective actions. Parametric models ap-
proximate truth to varying degrees, complicated by any data contamination. Tukey orga-
nized a careful study of location estimators with symmetric contamination (Andrews et al.,
1972). Of more general application are algorithms which control the influence of bad data.
Such robust algorithms (Hampel, 1974; Huber, 1981) bound the influence of any datum.
Maximizing the likelihood, Y-, log f(x;]0), means solving the equation >, ¢ (x;,0) = 0,
where b = [’/ f. Robust M-estimators have the same form of the estimating equation but
use different choices for the influence function, 1. For example, Tukey (Beaton and Tukey,
1974) proposed the popular biweight ¢ (z) = z(r? — 22)* for |z| < r and 0 elsewhere, where
r is a scale parameter. While many other specific forms have been proposed for the shape
of v, each has a scale parameter whose choice is critical for success. This scale parameter
may be determined by a prior robust estimate or by iteration.

In contrast, the minimum distance estimators described here implicitly define the shape
and scale of the influence function as a byproduct of an explicit parametric assumption of the
underlying density. Since the scale is estimated simultaneously with the model parameters,
the fitted model is often much easier to properly evaluate when a large contamination exists
(as illustrated below). Intuitively, the minimum distance estimator tries to find the largest
portion of the data that “matches” the model. In many instances, the analyst can easily

identify the data not well-fitted and take effective corrective actions.

3. THE PARAMETRIC MINIMUM L, ERROR CRITERION



The motivation for parametric LopF originates in the derivation of the nonparametric least-
squares cross-validation algorithm for choosing the bin width, A, of a histogram (Rudemo,
1982; Bowman, 1984). The role played by the parameter h may be viewed quite generally.
Let the estimate of an integral be denoted by placing a hat above the integral sign, Tg(;z:) dz

Consider minimizing an estimate of ISE with respect to h:

A~

b= argmin / [ila) = f(2)] de (1)

= arg mhin [/ fh(a:)de — 2/ f;(z:)f(a:)dm + /Af(;z:)Zd:L’] (2)
= argmhin [/ fh($)2d$ —2F {f;(X)H , (3)

since the minimizing value of A is not changed by eliminating [ f(z)?dz, an (unknown)
constant, from equation (2). Furthermore, the first integral in (2) can be evaluated exactly
for any value of h (and hence does not require estimation). The remaining term in equation
(2) is the average height of the histogram with bin width A. Rudemo (1982) proposed an
unbiased estimate by partitioning the sample into n — 1 points for estimation and 1 point

for evaluation, fh7_i($i), and then cycling over all n points and averaging, so that

orgmin | [ floPie = 23 f (o) )

) 2 n-+1
= argmin [(n—l)h_ Zuk] ,

n%(n —1)h

h

where vy is the bin count of By = (xo + kh,zo + (k + 1)h], and z¢ is the bin origin.
In the parametric setting with model f(z|f), equation (1) may be rewritten with 6

replacing h as the unknown parameter:

—~

0= argmjn [ [1(210) — f(x|00))* do (5

where the true parameter 6y is unknown. (Hence, 0 = 0y is not available as the optimal
estimator.) Once again, the expected height of the density, [ f(x|0) f(x|0y) dz, is the key
quantity to estimate. Data partitioning is not required in the parametric setting, since
the entire random sample is available to estimate the average height of f(xz]0). Thus, the

proposed estimator minimizing the parametric integrated square error criterion is

éLQE = argmm [/f (x0) da:——Zf z;|0) (6)
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Here we have assumed the correct parametric family; however, equation (6) may also be
applied in the case when the assumed parametric form is known to be incorrect in order to
achieve robustness.

Next, we introduce several examples of LpF functionals. Some related simulations are
presented in Section 7. The univariate and multivariate normal density will be denoted by

d(z|p, 0?) and ¢(x|p, X)), respectively.
Example 3.1 (Normal Density) Suppose X ~ N(u,1). Then

fars = argmax " log ¢(xilu, 1)

=1
z i L2 En P(xilp, 1)
= argmin | —— — — T,
IMLQE g 2ﬁ n i—1 a

n

Observe that Lol maximizes the sum of the densities while MLE maximizes the product
of the densities. The robustness of fir,r can be easily demonstrated empirically for this
problem in an interesting setting. Consider a sample of size 100 from N(0,1) with up
to 25 additional samples from a contamination density, N(5,1). In Figure 1, we plot the
log-likelihood and LpFE criteria for n = 100,105,...,125, always adding 5 new samples
from the contamination density while retaining the previous samples. Of course, a closed
form solution fiyrp =  1s available, so that plotting the likelihood is not necessary. The
upper right frame in Figure 1 illustrates how resistant Lol is to the contaminated data.
However, the lower frames, which are plotted over a wider interval, reveal a fuller story.
The likelihood shows little sign of the contaminated data, but the LpFE curves show a
local minimum near g = 5. The existence of the local minimum is appropriate since the
contaminated data also come from the assumed parametric model, N(u,1). Studying how
the amount of contamination affects the level of the curves, we may judge from the lower
right frame that the values at the two minima would be approximately equal when n = 200.

This and other empirical properties of the Lyl may be exploited in practice.

Example 3.2 (Normal Influence Functions) Recall that the influence function for MLFE
is given by ©» = f'/f. Thus for the normal model at the particular values (u, o) = (0,1),
¢(x) =z for p1, and ¢(z) = 2° — 1 for 0. Both are unbounded. Now the LyFE criterion for



the two-parameter normal is

LQE(ILL7 U) =

(zilp,0®)| - (7)

1 2 & 1 &

QWJ_E;MM’M’ _E; 2\/—
Thus the 9 function for LpF is the derivative of the bracketed quantity, leading to 1 (z) o
z exp(—22/2) for p, and () o (2v/2)™" + (22 — 1) exp(—2?%/2) for o. The shapes of the
influence functions for MLE and LgFE are similar for small values of the data. Interestingly,
Y is a “redescending” function for p, but @ is a “bounded” function for . Of practical
importance is the fact that robust scaling issues for the ¢ function are automatic and do
not require iteration. Specification of the functional form for f(z[f) in LpE obviates the

need for specification of the shape and scale of a ¥-function and any iteration.

Example 3.3 (Multivariate Normal Density) Suppose X ~ N(g,¥). Then

1
LoE(p,Y) = W— Zﬁb i, X

This example provides a simple demonstration the multivariate extension of LoF.
Example 3.4 (Uniform Density) Suppose X ~ U(0,8). Then

1 n
0 n@zl

=1

LoE(0) =

For most samples, the LopE will turn out to equal the MLE estimate, z(,). Recall that the
MISE estimator of 0 is slightly larger than z(,), but the data-based LypF estimator is not.
However, if the ratio of the adjacent order statistics is sufficiently large, then z(,) will not
be the LpE minimizer; see an example in Figure 2. In particular, if 2,y /2(,—1) > n/(n —2),
then HLQE # x(,); that is, HLQE < Ty if 2(n) is an “outlier.” We leave it as an exercise for

the reader to find the ratio for other order statistics.

Example 3.5 (Discrete Random Variables) The loss function analogous to (5) for
discrete random variables is 3, [f(z|0) — f(z]6o))°, which leads to the criterion

2

LoF(0) = S0 Jal0) = 23 (w10, (%)

The first sum is over all values of the discrete random variable.



Example 3.6 (Poisson Density) Barnett and Lewis (1994) summarize tests to decide
if the one or two largest data points from a Poisson sample are outliers. We generated a
sample of size 100 from a Poisson density with mean 5. In this sample, only the values
0,1,...,12 were observed, and occurred with frequency (1,6,9,15,19,11,15,6,10,6,0,1,1),
totalling 100. Now the mean is 4.89 and the LpE minimizer is 4.80. However, when
8 outliers were inserted at 15,20,25,...,50, the mean increased to 6.94 while the LoF
minimizer only increased to 4.85. Since the Lpl criterion is a continuous function of A,
finding X is very easy by graphical or numerical techniques, with or without outliers.

An interesting open problem is handling densities that are mixtures of continuous and

discrete components. Perhaps a weighted average of the criteria in (6) and (8) would work.
4. ORIGINS and ASYMPTOTICS

The first suggestion of replacing the likelihood function with LpF was given by Terrell
(1990), who proposed an alternative to nonparametric penalized-likelihood estimators. The
Lok criterion for parametric problems was rediscovered by Hjort (1994) and later by Scott
(1998). In an inspired paper, Basu et al. (1998) included MLE and LpE within a general
family of minimum-divergence estimators, indexed by a metaparameter a > 0, given by

LS fwloy] )

0, = arg mein [/ f(z]0)+dz — —
LyE corresponds to a = 1. MLE corresponds to o — 0.
Hjort (1994) and Scott (1998) demonstrated the consistency and asymptotic normality
of the LpF parameters, summarized in the proposition below. The more general result
in Basu et al. (1998) closely follows Lehmann’s (1983, Theorem 6.4.1) conditions for the
MLE. Less restrictive assumptions are required for Lypl/ when a = 1; the interested reader
is directed to Jureckova and Sen (1996). In practice, the LoF functional may not be strictly

convex, so that consistency is understood to hold in a neighborhood of . For complex

models, generating random starting guesses to try to avoid local minima is suggested.

Proposition 4.1 (Asymptotic Normality) If 8 is a vector of parameters, then under

mild conditions, the LoFE parameters are consistent and asymptotically normal:
Vi (8 —80) = AN (0,H7" |Gy — GhGY | HT')
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where

G = /wvgf(a:wo)f(mwo)dm
Gy = /Wng(a:|00)V9f(w|00)Tf(a:|00)da:

and H = /wvgf(a:|00)vgf(a:|00)Tda:.

Example 4.1 (Normal Density) If X ~ N(u,o?), then Proposition 4.1 gives

(i) ([ 355

In this example, the LpF parameters are asymptotically uncorrelated. The standard devia-

tion of i is 24.1% greater than that of & (the standard error of the median is 25.3% greater).
The standard deviation of & is 36.0% greater than that of the sample standard deviation
(the standard deviation of the IQR/1.349 is 65.0% greater); see Kendall and Stuart (1977,
Volume I, Section 10.12).

5. FITTING GAUSSIAN MIXTURE DENSITIES

A powerful parametric density model is the mixture model (Titterington et al., 1985):

K

[(x]0) =" wy (x| px, 07) -

k=1

In practice, mixture fitting is often a difficult task. Among the many maximum likelihood
solutions are Dirac spikes (“infinite” likelihood), so that a local solution is desired. Esti-
mation is facilitated by knowing the correct number of components. The EM algorithm is
generally favored, although Ripley (1996) has recommended directly optimizing the like-
lihood with Newton methods. In our experience, the EM algorithm is preferred for very
hard problems (overparameterized, high-dimensional).

The Lok criterion is particularly easy to apply with the use of the following identity:

| olali,of) éloluz.03) do = bl —pia| 0, 08 +03)

one of many useful formulae found in Wand and Jones (1995). For example, when K = 2,

w? (1 —wy)?

LQE(wh:ulv;u?aalvo-?) = 2ﬁ01+ 2ﬁ02

_ % 3 [wr(ailin, o) + (1 = w))(ailuz, o3)] (10)

+ 2wy (1 —wi)¢ <M1 — 2[0, 07 + 03)
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Using logarithmic transformations for the variances and a logistic-like transformation for
the weight, w,, leads to an unconstrained optimization problem that can be solved with
standard quasi-Newton method algorithms such as nlmin in S-Plus.

We begin by re-examining an important practical property of LoF mixture fits; namely,
if the number of components fitted is less than required, and if the components are suf-
ficiently well-separated, then the LpE solution tends to find the largest components. We
illustrate this by refitting the data used in Figure 1 with a single two-parameter Normal
fit using equation (7). (Recall that we assumed o =1 was known before.) With the two-
parameter model, there is a unique LpFE minimizer, which is shown in Figure 3 along with
the data histogram and MLE fit. The LpE parameters are (0.09,1.12) compared to the
sample moments of (1.00,2.20). (For the 100 “good” data points, the respective estimates
are (0.08,0.94) and (0.01,1.01).) This Lol behavior may be valuable in practice. In par-
ticular, we can hope to exclude not only one or two bad data points but entire groups of
outliers in many circumstances. We will also find this property useful when we turn to
regression problems below.

Clearly, the variance of the fitted normal in Figure 3 is inflated. We digress for a
moment to study that property. Using nlmin in S-Plus, we numerically find the best value
of o so that the ISE between the model N(0,c?) and the isolated component w - N(0, 1),
0 < w < 1, is minimized. Some of the density pairs are shown in Figure 4. When w = 0.8,
this model predicts the standard deviation will be inflated by 17.6%. The actual inflation
in our example is 19.5%. We find that when w < (2/2)7' = 0.3536, the “best” value
of o is infinite, so that f(xz) = 0 is the best L, fit. This result suggests that isolated
components with less than 40 or 50% of the data will not be fitted separately, but rather
will be ignored or combined with other data. One promising line of research that will be
pursued elsewhere is the additional simultaneous estimation of a weight w € [0,1] in the
expanded 3-parameter model, w- N(u, a?). For our example, the estimates are 0.780, 0.080,
and 0.919?, respectively; see the long-dashed line in Figure 3.

Next, we consider a more challenging mixture problem of a sample of the net incomes of
7,428 British households in 1982 (Hardle, 1990; Family Expenditure Survey (1968-1983)).
About 20 apparent outliers lie outside the plotting range in Figure 5, in which the K =



1-, 2-, and 3-component LpFE Gaussian mixture fits are displayed. The weights, means,
and standard deviations of the two-component fit from left to right are (36.1%,63.9%),
(1.81,2.23), and (.172,.170), respectively. A MLFE solution (not shown) found by the EM al-
gorithm is close by (McLachlan, 1992). A second EM solution is located at (12.9%,87.1%),
(1.69,2.14), and (.105,.236).

Fitting the three-component model was more interesting. The weights, means, and stan-
dard deviations of the three LoF components from left to right are (18.1%,12.4%),69.5%),
(1.70,1.90,2.21), and (.103,.083,.177), respectively. Using these components as an initial
guess, EM converged to essentially the first two-component EM solution with a small third
diffuse component which covers the outliers — 0.0181 ¢(x]2.12,.565% ). When the 20 outliers
were removed, the three-component EM solution was essentially the same as the Lyl solu-
tion on all the data shown in Figure 5. Finally, a four-component EM solution handled the
outliers with the fourth component. This example illustrates the somewhat unpredictable
influence outliers can have on MLE fits, as well as the robustness of the LpE criterion.

Kim (1995) has studied the normal mixture problem extensively. Together with Ter-
rell, they have devised a penalized LpF mixture algorithm whose solution is a quadratic
program. Specialized algorithms for solving quadratic programs can be significantly faster

than Newton’s method.

6. LINEAR REGRESSION

Regression and prediction problems are among the most important in statistics. At first
glance, there does not appear to be an obvious role for Lol in regression problems. But if
we focus on the distributional assumption of the residuals, then we see that the regression
coefficients may be obtained indirectly by using the LpF criterion to model the distribution
of the estimated residuals.

Consider the simple linear regression model
Y=a+bx+e¢ where GNN(O,O'E).

The LpE criterion directly employs the parametric model of the residual density, f(¢) =

10



#(€|0,02). Invoking equation (6), we have
1 2 &

(&767 (}6) = arg L{%}i Qﬁae - ggqﬁ@m#ﬁ) )

where ¢; = y; — a — bz;. Note that all three parameters are estimated simultaneously. LoE

tries to find the model with the most Normal set (or subset) of residuals available.

On the other hand, the method of least-squares does not require any parametric as-
sumption. Any prior assumption of Normality must be verified after fitting, using a variety
of tests and graphical diagnostic plots of the residuals.

We compare these ideas on a simulated data set of 250 points, 200 from the model
y = = + ¢, and 50 from y = ¢, where € ~ N(0,1). For clarity, the z-design was chosen
so that the points are in three clusters; see Figure 6. In order to facilitate comparison
and display between the LopF and MLE criteria, we have used the true value of o, = 1 in
LpE. With this knowledge, LyF finds two plausible regression lines which explain different
subsets of these data. In the second row of Figure 6, examine the location and shape of the
residual histograms about the point € = 0. In particular, the LyF plots clearly show the
outlying cluster of points, while the MLFE residual histogram is much less clear. In other
words, the diagnostic step is easier for Lol fits. Note that the mean of the Lol residuals
is not necessarily equal to zero. Without prior knowledge of o, there is only one LopE
solution: @ = —.04, b= 98, and &6, = 1.35, which should be compared to the values given
in the residual plots in Figure 6. Only the estimate of o, is inflated.

Next, we revisit an example discussed by Rousseeuw and Leroy (1987). In Figure 7, the
least-squares regression line is heavily influenced by four giant stars in the Hertzsprung-
Russell diagram of the star cluster CYG OB1. The authors derive the least median squares
(LMS) of residuals estimator, § = —12.3 4+ 3.90z. The equation of our LpF fit for these
data is quite similar, § = —8.77 4 3.11z, with 6. = 0.414. Kernel estimates of the residuals
for the LS and Lyk fits are plotted in Figure 8, together with the fitted normal model of
the residuals. Again, the LMS and Lol residuals are quite similar.

Our final example revisits the Brownlee (1960) stack-loss data. This small 21-sample
4-variable set is interesting for the variety of findings. Dodge (1996) catalogs 26 distinct

published sets of detected outliers. In Figure 9, we display kernel estimates of the residuals
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computed by least-squares, by rreg (a function in S-Plus using iteratively reweighted least-
squares), and by Lol In this case, the goal of finding a model where a large fraction of the
residuals are normal is achieved, highlighting 5 cases as outliers: 1,3,4,13, and 21. Case 13

is a borderline outlier. The relative diagnostic value of the Lol residual plot seems clear.
7. SIMULATION STUDIES

In this section, we report on simulations comparing MLE, Lpl, and Minimum Hellinger
Distance (MHD) parameter estimates in some of the settings above. In each case, the
MHD estimator was fitted to a Gaussian kernel density estimator using the exact best
MISE bandwidth (Marron and Wand, 1992).

We first consider fitting a two-parameter normal model to n = 100 N(0,1) data, re-
peated 1,000 times. Histograms of the LoF/ and MHD estimates of y and o are shown in
Figure 10. The optimal bandwidth for the MHD target kernel density was h* = 0.445. Note
that o(X) = o/y/n = 0.01, a value matched by MHD, while LyE is 25.0% greater than
this (in close agreement to the theoretical figure of 24.1% given at the end of Section 4).
For the standard deviation, we have that o(S) = o/v/2n = 0.071 for the MLE. From our
simulation, the Lol value is 38.0% greater than that of the MLE (compared to the 36.0%
figure predicted by using Proposition 4.1). Observe that ¢ for MHD is biased upwards by
7.9%. However; the standard deviation of a kernel density estimate is larger than the sam-
ple standard deviation, s, and is given by (s2 4 h%0%)"/? (Scott, 1992, p. 193); therefore,
the predicted increase is 9.5% in this case since the kernel variance o = 1. This figure
nearly matches the observed 7.9% increase. On the other hand, the standard deviation of
ammp 1s quite small. We computed the root mean square error of &LQE and opmp as 0.0984
and 0.1009, respectively, so that the accuracy of each is essentially equivalent. Again, the
inefficiency of these estimators must be balanced against other properties in practice.

In the case of MHD estimation, we note that the use of bandwidths other than A* has
little effect on the estimate of location; however, the estimated standard deviation increases
with the increasing bandwidth. The MHD estimation algorithm was implemented in S-Plus
using the built-in functions nlmin and integrate, which perform quasi-Newton optimization

and numerical integration, respectively. This approach gives approximately six significant
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digits. (Such accuracy increases estimation time and may be more than the required time
in practice. Woodward, Whitney, and Eslinger (1995), for example, used golden section
search to find MHD parameters, computing the criterion using Simpson’s rule with a mesh
of 201 points. They also chose to use the biweight rather than Gaussian kernel.) Estimation
in our simulations was started using the values (z, s), although a number of other starting
values were examined without observing any other solutions in this simple setting. Fach
individual sample of the simulation required an average of 0.016, 0.175, and 20.74 seconds
for MLE, LopE, and MHD, respectively, on a Sun Ultra 1 computer. These times include the
overhead of generating the data, storing and plotting the results. The number of iterations
required for nlmin to converge for the LoFs and MHD estimates was usually no more than
10. Obviously, these numbers would change if other starting values were chosen.

Our second set of simulations extends our study of the set of contaminated data pre-
sented in Figure 3. To each sample of 100 N (0, 1) points, 25 N(e, 1) points were added, for
¢ =0.0,0.5,1.0,...,10.0. We expect for ¢ sufficiently large, that any minimum distance
estimator will eventually ignore the 25 “bad” data points. In Figures 11 and 12, boxplots of
,ELLQE, [MHD s &LQE, and opp for 256 simulations for each value of ¢ are displayed. We note
that all the parameters initially track the increasing contamination location, until the sep-
aration is apparent to the algorithm. In all of the MHD optimizations we used A* = 0.445,
which is appropriate for 100 N (0, 1) samples. There were no observed local minima in the
LyE samples, but local minima (large oapmp) were observed in an increasing number of the
MHD samples with ¢ greater than 5.0. We have recorded the better solution. Finally, we
note that while fiz,r returns to the value of 0, 67,r does not return all the way to the value
of 1.0, but to the value 1.166; see Figure 4, in which the predicted value is 1.176 for an 80%
component. These graphs confirm our hypothesis, although the MHD estimator is slower
to ignore the contaminated data than we initially expected.

Our final simulation uses the 5-parameter 2-component normal mixture model

w G(zlpr,07) + (1 — wr) (z|p2, 03) .

The same S-Plus functions mentioned above were used to estimate these parameters by
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MLE, LopE, and MHD for 100 samples of size n = 400 from our favorite “hard” mixture

S NO.1) + 1 N(3372).
Boxplots for all 5 parameters and 3 methods are shown in Figure 13. The starting values
were the true parameter values. The optimal bandwidth, h* = 0.206, was used in the
MHD algorithm. The results are similar. The LpFE parameters are somewhat more vari-
able, while the estimated MHD standard deviations are inflated. As is generally the case,
more complex models are more susceptible to poor structural fits if the sample size is too
small. Nevertheless, all the algorithms converged in this study. In a few MHD cases, the
numerical integration algorithm was sufficiently noisy that the S-Plus optimization code
returned a warning that the convergence was “false.” We checked these solutions and be-
lieve the numerical derivatives could not be computed with sufficient accuracy to confirm
convergence, although the numerical solution had in fact been reached.

In more extensive simulations of location and scale problems, Wojciechowski (2001)
compared fifteen robust estimators, including LopF, M-estimators, and minimum distance
estimators. Lyl often came out on top, particularly with heavy-tailed, asymmetric con-

tamination.
8. DISCUSSION

In this paper, we have demonstrated how an oft-used nonparametric estimation criterion
can be applied to a variety of parametric problems. In particular, our implementation is
fully constructive in the same sense as maximum likelihood. Numerical optimization is
required in almost every case, but very complicated models can be implemented quickly.
The parameters are relatively inefficient compared to maximum likelihood theory at the
correct model. But as some nonparametric workers like to argue, the more interesting
and challenging situations are away from the model. In our applications, we believe that
a known parametric model represents a significant fraction of the data. The ability to
successfully handle a nontrivial fraction of bad data should be of extreme value with high-
dimensional problems and more importantly with massive data sets (for which careful data

preparation is not feasible). In other words, we build models as good approximations and
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not as representing absolute truth. With large samples, standard testing almost always
rejects our models. LpF is better suited to treating models as approximations, handling
outliers and underspecified models in a useful manner. A comparison of LpF and MLE
fits almost always provides an informative diagnostic. However, comparing the residuals
in Figures 8 and 9 emphasizes the added benefit of criticizing the model using LpF versus
MLE residuals. Since MLE must account for all the data, the fits often blur the distinction
between good and bad data. The difficulty grows with dimension.

Tukey’s study of robust estimators (Andrews et al., 1972) was an important step to
modern data analysis. Tukey’s models of contamination focused on symmetric, heavy-
tailed data. By making explicit parametric assumptions, the LpF approach can handle
asymmetric error distributions as well. The shape of the influence function is implicitly
determined and in some sense is best-suited for the task, given the choice of ISE.

This line of research can trace its origins to our long-standing interest in bandwidth
selection and to a series of lectures by George Terrell in the RIMS summer program at Rice
University from 1996-1998. I was originally curious to see how these nonparametric ideas
would work with parametric models. The inefficiency of LyoF relative to other choices of
was noted by Basu et al. (1998). There is no general procedure for choosing «; however,
they suggest that o’s less than 0.25 are sufficiently robust. On the other hand, I have taken
the point of view that the wealth of practical experience and success in the nonparametric
world lends credence to the idea that LpF is a special class of robust parametric estimators
that like median-based estimators, sacrifices some asymptotic efficiency for clear benefits
in difficult problems faced by practicing statisticians. Furthermore, in practice for multi-
variate mixture problems and partial mixture modeling, the availability of a closed-form
minimum-distance criterion is critical, compared to numerical integration required by min-
imum divergence. Basu et al. also give further details about hypothesis testing possibilities
and breakdown points. Clearly, the parametric bootstrap has application for obtaining
confidence intervals.

Our simulation studies also reinforce the benefit of a closed form expression for a cri-
terion in any numerical optimization. The numerical integration required for computing

Hellinger distance is a practical limitation — not only in computation time but also for
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obtaining sufficient accuracy to perform quasi-Newton optimization (especially for multi-
variate models, f(z|0)). Lol enjoys one such advantage over the other cases of divergence
measure considered by Basu et al., namely, fitting normal mixtures. The integral [ f'** in
Equation (9) does not have a closed form for 0 < o < 2 except at Lpk; see equation (10).
For fitting multivariate normal mixture models, existence of a closed form criterion is of
great practical importance.

We have begun to investigate a number of other applications. One involving estimation
of an economic stochastic frontier function will be reported elsewhere (Scott, Simar, and
Wilson, 2001). Multivariate regression and time series, especially with massive data sets,
are particularly interesting. Other statistical algorithms which could benefit from robust-
ness are excellent candidates for minimum distance procedures. We hope to explore those

applications soon.
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Figure 1: (Upper left) Log-likelihood profiles for contaminated data (n = 100, 105, 110,
115, 120, 125). Best values are indicated by circles and/or dotted lines. (Upper right) Lok
profiles for same data. (Bottom left) MLE profiles on a larger interval. (Bottom right) LoF
profiles on a larger interval. (Note that the line type corresponding to each sample size is
the same in all four frames.)
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Figure 2: The LpF function when f(z|6)is U(0,80) for a sample of 25 points from U(0,1.5)
with two contaminated points added at 1.90 and 1.96. éLQE = 1.498 in this case.
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Figure 4: Plots of the component, w N(0,1), (solid line) and the best fitting model,
N(0,0?), (dashed line) for several values of w. For w < 0.3536, o = oc; see text.
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Figure 6: MLE and Lok regression criteria with data and estimates shown in the upper
left frame. Residual plots for the single MLE curve and the two Lol curves are shown in
the second row. Note the location of the origin (¢ = 0) in each.
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the variables (1) air flow, (2) water temperature, and (3) acid concentration are displayed,
as well as the case numbers of outliers.
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Figure 11: In this figure, 256 samples of size 125 were generated for 13 different contamina-
tion locations, which are indicated along the horizontal axis. 100 standard normal samples
were combined with 25 N(¢, 1) points, for ¢ = 0.0, 0.5, 1.0,...,10.0. Boxplots of the esti-
mated location parameter are shown for LoF/ and MHD algorithms which attempted to fit
the partially correct model, N(u,c?). (See Figure 12 for 5.)
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Figure 12: Continuing the summary of data depicted in Figure 11, boxplots of the estimated
standard deviation parameter are shown for Lyl and MHD algorithms which attempted
to fit the partially correct model, N(u,o?).
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Figure 13: Boxplots of estimated MLE, LoF, and MHD (left-to-right) parameters from
100 simulations of a 5-parameter normal mixture. The boxplots have been centered by
subtracting the true parameter values, w = 0.75, 3 =0, pp =3, o3 = 1, and oy = 1/3.
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