Solutions to Exam 1 (2-21-2017 Stat 419/519):

- 1. Let B represent the symbol for the unit of barrels of oil. Then
 - (a) B for mean
- (b) B^2 for variance
- (c) B^{-1} for the (any) density function. Note:
 - $\begin{array}{l} \int_x f(x) \, dx = 1 \mbox{ and follow units} \\ U(a,b) \mbox{ has density } f(x) = \frac{1}{b-a} \\ N(\mu,\sigma^2) \mbox{ has density } f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp(-(x-\mu)^2/2\sigma^2) \end{array}$

2. With the bivariate normal density in standard form, the likelihood is

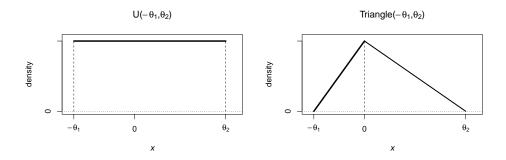
$$\prod_{i=1}^{n} f(x_i, y_i | \rho) = (2\pi)^{-n} (1 - \rho^2)^{-n/2} \exp\left[-\frac{1}{2} \sum_{i} \frac{x_i^2 - 2\rho x_i y_i + y_i^2}{1 - \rho^2}\right].$$

By inspection, the sufficient statistics are

$$\sum x_i^2$$
, $\sum y_i^2$, and $\sum x_i y_i$.

Note that these are 3 separate statistics; adding two doesn't work.

3. Note: We analyzed $U(-\theta, \theta)$ and $Tri(-\theta, \theta)$ in class and examples.



The density functions for the two figures are

$$f(x|\theta_1, \theta_1) = \frac{1}{\theta_1 + \theta_2} I(x \ge -\theta_1) I(x \le \theta_2)$$

and

$$f(x|\theta_1, \theta_1) = \begin{cases} 0 & x < -\theta_1 \\ \frac{2}{\theta_1(\theta_1 + \theta_2)}(x + \theta_1) & -\theta_1 < x < 0 \\ \frac{2}{\theta_2(\theta_1 + \theta_2)}(\theta_2 - x) & 0 < x < \theta_2 \\ 0 & x > \theta_2 \end{cases}$$

(a) The sufficient statistics are $X_{(1)}$ and $X_{(n)}$, since

$$f(\boldsymbol{x}|\theta_1, \theta_2) = \prod_{i=1}^n f(x_i|\theta_1, \theta_2)$$

= $(\theta_1 + \theta_2)^{-n} \prod_{i=1}^n I(x_i \ge -\theta_1) I(x_i \le \theta_2)$
= $(\theta_1 + \theta_2)^{-n} I(x_{(1)} \ge -\theta_1) I(x_{(n)} \le \theta_2)$

(b) Follows from the equation

$$\frac{f(\boldsymbol{x}|\theta_1, \theta_2)}{f(\boldsymbol{y}|\theta_1, \theta_2)} = \frac{I(x_{(1)} \ge -\theta_1)I(x_{(n)} \le \theta_2)}{I(y_{(1)} \ge -\theta_1)I(y_{(n)} \le \theta_2)} \,.$$

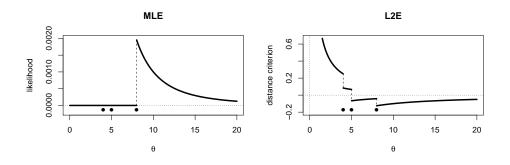
- (c) No, since in that case, $f(x_{(1)}) = f(x_{(n)}) = 0$ and the likelihood is 0.
- (d) As in many of the homework problems, the full set of order statistics.

4. Since a sufficient statistic exists, the likelihood has the factorization representation (see Theorem 6.2.6)

$$\begin{split} \hat{\theta}_{\text{MLE}}(\boldsymbol{x}) &= \arg\max_{\boldsymbol{\theta}} f(\boldsymbol{x}|\boldsymbol{\theta}) \\ &= \arg\max_{\boldsymbol{\theta}} g(T(\boldsymbol{x})|\boldsymbol{\theta})h(\boldsymbol{x}) \\ &= \arg\max_{\boldsymbol{\theta}} g(T(\boldsymbol{x})|\boldsymbol{\theta}) \,. \end{split}$$

Thus the MLE is a function of the data only through the statistic $T(\boldsymbol{x})$.

Note: The sufficient statistics has all the information, but we don't know if the MLE uses it or not? We also don't know if an unbiased estimator exists, so Rao-Blackwell doesn't necessarily apply. 5. Note the at $x = x_{(3)} = 8$, the MLE attains a maximum and the L2E attains a minimum in the graphs.



- (a) As we have seen, the MLE of a random sample of size n for the $U(0, \theta)$ density is $X_{(n)}$; hence, the MLE will be the "new" $x_{(3)}$.
- (b) The L2E for the $U(0,\theta)$ density is

$$\int_{-\infty}^{\infty} f(x)^2 dx - \frac{2}{n} \sum_{i=1}^{n} f(x_i) = \int_{0}^{\theta} \frac{1}{\theta^2} dx - \frac{2}{3} \sum_{i=1}^{3} \frac{1}{\theta} I(0 \le x_i \le \theta)$$
$$= \frac{1}{\theta} - \frac{2}{3} \sum_{i=1}^{3} \frac{1}{\theta} I(0 \le x_i \le \theta).$$

For the 3 values $\boldsymbol{x} = (4, 5, 8)$, this is defined piecewise as

$$\mathrm{L2E}(\theta) = \begin{cases} \frac{1}{\theta} - \frac{2}{3} \cdot \frac{0}{\theta} = \frac{1}{\theta} & 0 \le \theta < 4\\ \frac{1}{\theta} - \frac{2}{3} \cdot \frac{1}{\theta} = \frac{1}{3\theta} & 4 \le \theta < 5\\ \frac{1}{\theta} - \frac{2}{3} \cdot \frac{2}{\theta} = -\frac{1}{3\theta} & 5 \le \theta < 8\\ \frac{1}{\theta} - \frac{2}{3} \cdot \frac{3}{\theta} = -\frac{1}{\theta} & 8 \le \theta \end{cases}$$

as shown in the figure. Note that the minimum value of L2E (which is $-1/x_{(3)} = -1/8$) is attained at $x = x_{(3)} = 8$. The L2E value at $x = x_{(2)} = 5$ is -1/15, so if $x_{(3)} > 15$, the L2E minimum occurs at x = 5, since $-1/15 < -1/\theta$ when $\theta > 15$.

6. It is easy to verify that

$$f(x) = \frac{1}{b-a}$$
 $EX = \frac{a+b}{2}$ $VarX = \frac{(b-a)^2}{12}$.

(519) Letting the first two sample moments be denoted by m and v, we must solve the pair of equations

$$m = \frac{a+b}{2}$$
 and $v = \frac{1}{12}(b-a)^2$.

The first equation implies that b = 2m - a; hence,

$$v = \frac{1}{12}(b-a)^2$$

= $\frac{1}{12}(2m-a-a)^2$
= $\frac{1}{12}(2m-2a)^2$
= $\frac{1}{3}(m-a)^2$
= $\frac{1}{3}(a-m)^2$. Therefore,
 $a-m = \pm\sqrt{3v}$ or
 $a = m \pm\sqrt{3v}$ and
 $b = 2m-a$
= $m \pm\sqrt{3v}$.

Since a < b, we see $(\hat{a}, \hat{b}) = (m - \sqrt{3v}, m + \sqrt{3v})$.

(419) If a = 0 is known, then a MoM estimate may be obtained by either solving m = b/2 or $\hat{b} = 2m = 2\bar{x}$, or $v = b^2/12$, which implies $\hat{b} = 2\sqrt{3v}$.

7. If $X \sim P(\lambda)$, then $\mathbf{E}X = \mathbf{Var}X = \lambda$. Recall

$$E\bar{X} = EX$$
 and $Var\bar{X} = \frac{VarX}{n}$.

(a) With $W = a\bar{X}$,

$$E W = a E \overline{X} = a\lambda$$

$$Var W = a^{2} Var \overline{X} = a^{2} \frac{\lambda}{n}; \text{ hence,}$$

$$MSE(a) = Var W + (E W - \lambda)^{2}$$

$$= a^{2} \frac{\lambda}{n} + (a\lambda - a)^{2}$$

$$= a^{2} \frac{\lambda}{n} + (a - 1)^{2} \lambda^{2}.$$

(b) Optimizing over $a \text{ not } \lambda$,

$$\frac{\partial \operatorname{MSE}(a)}{\partial a} = 2a\frac{\lambda}{n} + 2(a-1)\lambda^2, \quad \text{which vanishes when}$$
$$a\left(\frac{\lambda}{n} + \lambda^2\right) = \lambda^2$$
$$a\lambda\left(\frac{1}{n} + \lambda\right) = \lambda^2$$
$$a\left(\frac{1+n\lambda}{n}\right) = \lambda; \quad \text{and finally,}$$
$$a^* = \frac{n\lambda}{1+n\lambda}.$$

(c) The optimal risk is given by

$$\begin{split} \text{MSE}(a^*) &= \left(\frac{n\lambda}{1+n\lambda}\right)^2 \frac{\lambda}{n} + \left(\frac{n\lambda}{1+n\lambda} - 1\right)^2 \lambda^2 \\ &= \frac{n\lambda^3}{(1+n\lambda)^2} + \frac{\lambda^2}{(1+n\lambda)^2} \\ &= \frac{(n\lambda+1)\lambda^2}{(1+n\lambda)^2} \\ &= \frac{\lambda^2}{1+n\lambda} \,. \end{split}$$

(d) The improvement in risk is given by

$$\frac{\text{MSE}(a^*)}{\text{MSE}(a=1)} = \frac{\lambda^2}{1+n\lambda} \frac{n}{\lambda} = \frac{n\lambda}{1+n\lambda}$$
$$= \frac{1}{1+\frac{1}{n\lambda}} < 1, \text{ approaching } 1 \text{ as } n \to \infty.$$

8. This identity is proven by integrating by parts.