/* 8-2-2023 exact mean MISE v known mu-hat = Xb calculation Mathematica */ p[x_,m_,v_] := Exp[-(x-m)^2/2/v] / Sqrt[ 2 Pi v ] /* fhat = N(x,xb,v) f = n(x,m,v) Xb = f(xb,m,v/n) */ ise = Integrate[ ( p[x,xb,v]-p[x,m,v] )^2 , {x,-Infinity,Infinity}, Assumptions -> {v>0,n>1} ] mise = Integrate[ ise p[xb,m,v/n] , {xb,-Infinity,Infinity}, Assumptions -> {v>0,n>1} ] Series[ mise, {n,Infinity,2} ] /* exact MISE S2 */ del = p[x, 0, s2] - p[x, 0, v] ise$s2 = Integrate[del^2, {x, -Infinity, Infinity}, Assumptions -> {s2 > 0, v > 0}] /* error in class */ fs2 = (v s2 /(n-1))^((n-3)/2) Exp[ -v s2 / (n-1)/2] / 2^((n-1)/2) / Gamma[ (n-1)/2 ] v/(n-1) fs2v = ((n-1) s2/v )^((n-3)/2) Exp[ -(n-1) s2 / ( 2 * v ) ] / ( 2^((n-1)/2) * Gamma[ (n-1)/2 ] ) * (n-1)/v /* corrected 9-24-2023 *(/ fs2v = (n-1)^((n-1)/2) / ( 2^((n-1)/2) * Gamma[ (n-1)/2 ] * v^((n-1)/2) ) * s2^((n-3)/2) * Exp[-(n-1)*s2/(2*v) ] fs2 = (n-1)^((n-1)/2) * s2^((n-3)/2) * Exp[ -(n-1)*s2/2 ] / ( 2^((n-1)/2) * Gamma[ (n-1)/2 ] ) /* corrected v=1 case */ , Integrate[ fs2v,{ s2,0,Infinity}, Assumptions -> { v>0,n>2} ] mise$s2 = Integrate[ ise$s2 fs2v,{ s2,0,Infinity}, Assumptions -> { v>0,n>2} ] Series[ mise$s2, {n,Infinity,1} ] /* still a mess */ LogLogPlot[ mise$2, {n,25,1000} ] /* ugh */ /* for some reason only works for n odd 9-25-2023 */ ttt = Table[{Log[k], ( mise$s2 /. {v -> 1, n -> k})}, {k, 3, 41, 2}]; ListLogPlot[ttt] /* Taylor Series same Xb v known */ dfhat = (x-xb) Exp[ -(x-xb)^2/2/v ] / Sqrt[ 2 Pi ] / v^(3/2) ise_ts = Integrate[ dfhat^2 , {x,-Infinity,Infinity}, Assumptions -> v>0 ] /* Taylor Series S^2=S2 unbiased mu known */ fhatS2 = Exp[-(x-m)^2/2/S2] / Sqrt[2 Pi S2] dfhatS2 = D[ fhatS2, S2 ] wk1 = ( Integrate[dfhatS2^2, {x, -Infinity, Infinity}, Assumptions -> S2 > 0] ) /. { S2 -> s^2 } var$S2 = 2 s^4 / (n-1) mise$S2 = var$S2 wk1 mise$S2 = Simplify[ var$S2 wk1 , Assumptions -> {s>0}] /* PowerExpand does not req Assumptions */ mise = Normal[ Series[ mise$S2, {n,Infinity,2}]]