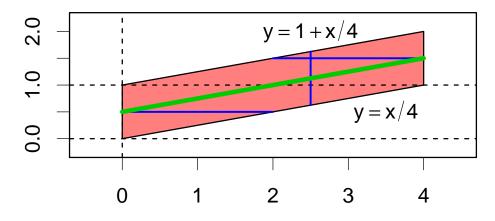
1. Suppose the random variables X and Y follow the bivariate normal PDF. If

$$Var\left(Y\,|\,X=x\right) = \frac{1}{4}\,Var\,Y\,,$$

what is the correlation between X and Y? *Hint: You may assume* $\sigma_Y^2 = 1$ *w.l.o.g.*

- 2. Suppose the joint distribution of the random variables (X, Y) is uniform over the region (parallelogram) shown on the following page.
 - (a) Find the marginal PDFs of X and Y. Find μ_x , σ_x^2 , μ_y , and σ_y^2 .
 - (b) Find the covariance and correlation between X and Y.
 - (c) Find the conditional distribution of Y|X = x. Sketch the conditional mean.
 - (d) Find the conditional variance of Y|X = x and compare to the unconditional variance σ_u^2 .



3. Suppose we have n = 3 random samples from a PDF with mean equal to 0 and finite variance $\sigma^2 > 0$. We compute the sample mean of the first 2 points, as well as all 3 points:

$$\bar{X}_2 = \frac{X_1 + X_2}{2}$$
$$\bar{X}_3 = \frac{X_1 + X_2 + X_3}{3}$$

What is the correlation between \bar{X}_2 and \bar{X}_3 ?

4. Suppose the random variable X follows the Rayleigh PDF given by

$$f(x) = x e^{-x^2/2}$$
 for $x > 0$.

Consider the transformation

$$y = y(x) = x^2.$$

Find the PDF of Y, call it g(y), using the change-of-variables technique. Name the PDF.

5. We wish to simulate random numbers from the PDF

$$f(x) = 3x^2$$
, for $0 < x < 1$.

Given a stream of U(0,1) random variables, use the Probability Integral Transform to show how to generate an x given $u \sim U(0,1)$?

6. Consider an infinite sequence of random variables (r.v.'s)

$$X_1, X_2, X_3, \ldots$$

that in fact are all independent and identically distributed to the r.v. $X \sim f(x)$. Does the sequence $\{X_i\}$ converge to the random variable X? If so, in what sense? If not, why not?

7. Show that the sample variance S^2 based upon *n* random samples converges in probability to σ^2 . Assume the theoretical variance of S^2 ,

$$Var S^2 = \frac{\kappa - \sigma^4}{n} + \frac{2\sigma^4}{n(n-1)}$$

exists and is finite. (Fill in the details from the book's argument.)

8. Suppose the two random variables, X and Y, are independent and have the PDFs

$$X \sim B(30, p)$$
 and $Y \sim B(50, p)$.

Find the PDF of the random variable X + Y. Hints: Use the MGF technique for sums. B(n, p) is the binomial PDF.

- 9. Suppose the random variable X follows the Poisson P(m) PDF, and that you have a random sample X_1, X_2, \ldots, X_n from it.
 - (a) What is the Cramér-Rao Lower Bound on the variance of any unbiased estimator of the parameter m?
 - (b) What is the maximum likelihood estimator of m?
 - (c) Does the variance of the MLE achieve the CRLB for all n?
- 10. Consider a random sample of size n from the Beta PDF with parameter $\alpha > 0$ and second parameter $\beta = 1$. Find the sufficient statistic for α .
- 11. Suppose we have two **unbiased estimators**, X and Y, for an unknown parameter θ . But the variance of Y is greater than the variance of X; hence, X is more efficient. Furthermore, X and Y are not independent, but are **correlated**. In fact,

$$\sigma_Y^2 = 4 \, \sigma_X^2 \quad \text{and} \quad \rho_{XY} = -\frac{1}{2} \,.$$

Show the following three estimators — $\hat{\theta}_1$, $\hat{\theta}_2$, and $\hat{\theta}_3$ — are also unbiased for θ and compute their variance. Order the 3 estimators and determine which is "best?"

(a) $\hat{\theta}_1 = X \quad \text{itself?}$ (b) $\hat{\theta}_2 = \frac{X+Y}{2} , \quad \text{their average?}$

(c)

 $\hat{\theta}_3 = \frac{5}{7}X + \frac{2}{7}Y$, a weighted average?