next up previous
Next: Solution to Exercise 4.24. Up: No Title Previous: Solution to Exercise 3.77.

Solution to Exercise 4.10.

  (a) The figure below represents my crude attempt to sketch the graph.

(b)

\begin{displaymath}
\int_{- \infty}^{\infty} \, f(x;k,\theta) \, dx
 \; = \; 
\i...
 ... \; = \; 
k \theta^k \int_{\theta}^{\infty} \, x^{-(k+1)} \, dx\end{displaymath}

\begin{displaymath}
\; = \; 
k \theta^k \left[ \frac{x^{-(k+1)+1}}{-(k+1)+1} \ri...
 ...}
 \; = \; \theta^k \left[ -(\infty)^{-k} + \theta^{-k} \right]\end{displaymath}

\begin{displaymath}
\; = \; \theta^k \left[ 0 + \theta^{-k} \right]
 \; = \; \theta^k \theta^{-k} \; = \; 1 .\end{displaymath}

(c)

\begin{displaymath}
P[X \le b] \; = \; \int_{- \infty}^{b} \, f(x;k,\theta) \, dx
 \; = \; 
\int_{\theta}^{b} \, \frac{k \theta^k}{x^{k+1}} \, dx\end{displaymath}

\begin{displaymath}
\; = \; 
\theta^k \left[ -b^{-k} + \theta^{-k} \right]
 \; = \; 1 - (\theta/b)^k .\end{displaymath}

(d)

\begin{displaymath}
P[a \le X \le b] \; = \; P[ X \le b ] - P[X < a ]
 \; = \; P[ X \le b ] - P[X \le a ]\end{displaymath}

\begin{displaymath}
\; = \; 1 - (\theta/b)^k \, - \, \left[ 1 - (\theta/a)^k \right]
 \; = \; \theta^k \left[ 1/a^k - 1/b^k \right]\end{displaymath}



Dennis Cox
2/19/2001