next up previous
Next: Solution to Exercise 4.48. Up: No Title Previous: No Title

Solution to Exercise 4.32.

  Letting X denote the substrate concentration in mg/cm3, we are given that

\begin{displaymath}
X \sim N(.30,(.06)^2).\end{displaymath}

Below, Z = (X-.30)/.06 we be N(0,1).

(a)

\begin{displaymath}
P[ X \ge .25] \; = \; 
P \left[ Z \ge \frac{.25 - .30}{.06} ...
 ... \ge -.83 ] \; = \; 
1 - \Phi(-.83) \; = \; 1 - .2033 = .7967 .\end{displaymath}

(b)

\begin{displaymath}
P[ X \le .10] \; = \; 
P \left[ Z \le \frac{.10 - .30}{.06} ...
 ...]
 \; = \; P[ Z \le -3.33 ] \; = \; 
\Phi(-3.33) \; = \; .0004.\end{displaymath}

(c) From Table 4.1 on p. 163, z.05 = 1.645. Therefore, the 95'th percentile of the distribution of X is

\begin{displaymath}
(0.06)*1.645 + .30
 \; = \; 0.3987 ,\end{displaymath}

that is, the largest 5% of values are those above 0.3987.



Dennis Cox
2/26/2001