Next: Solution to Exercise 4.48.
Up: No Title
Previous: No Title
Letting X denote the substrate concentration in mg/cm3,
we are given that

Below, Z = (X-.30)/.06 we be N(0,1).
(a)
![\begin{displaymath}
P[ X \ge .25] \; = \;
P \left[ Z \ge \frac{.25 - .30}{.06} ...
... \ge -.83 ] \; = \;
1 - \Phi(-.83) \; = \; 1 - .2033 = .7967 .\end{displaymath}](img2.gif)
(b)
![\begin{displaymath}
P[ X \le .10] \; = \;
P \left[ Z \le \frac{.10 - .30}{.06} ...
...]
\; = \; P[ Z \le -3.33 ] \; = \;
\Phi(-3.33) \; = \; .0004.\end{displaymath}](img3.gif)
(c)
From Table 4.1 on p. 163, z.05 = 1.645.
Therefore, the 95'th percentile of the distribution of
X is

that is, the largest 5% of values are those above 0.3987.
Dennis Cox
2/26/2001