next up previous
Next: About this document ... Up: No Title Previous: Solution to Exercise 4.59.

Solution to Exercise 4.74.

  If X is $LogNormal(\mu = 1.9, \sigma = .9)$, then

\begin{displaymath}
Y \; = \; \log X \; \sim \; N(1.9,(.9)^2).\end{displaymath}

(a) Using the formulae on p. 181,

\begin{displaymath}
E[X] \; = \; \exp( 1.9 + (.9)^2/2 )
10.02 ,\end{displaymath}

and

\begin{displaymath}
V[X] \; = \; \exp(2*1.9 + (.9)^2 )*(\exp((.9)^2) -1)
 \; = \; 125.4 ,\end{displaymath}

so

\begin{displaymath}
\sigma_X \; = \; 11.20 .\end{displaymath}

(b)

\begin{displaymath}
P[ X \le 10 ] \; = \; 
P[ Y \le \log 10 ]
 \; = \; 
\Phi \le...
 ...{\log(10)-1.9}{.9} \right)
 \; = \; 
\Phi (.45) \; = \; .6736 .\end{displaymath}

\begin{displaymath}
P[ 5 < X \le 10 ] \; = \; 
P[X \le 10 ] - P[X \le 5]\end{displaymath}

\begin{displaymath}
\; = \; 
.6736 - \Phi \left( \frac{\log(5)-1.9}{.9} \right)
...
 ... \; 
.6736 - \Phi(-.32) \; = \; 
.6736 - .3745 \; = \; 
.2991 .\end{displaymath}



Dennis Cox
2/26/2001