next up previous
Next: Solution to Exercise 4.74. Up: No Title Previous: Solution to Exercise 4.48.

Solution to Exercise 4.59.

  Note that $\lambda \; = \; .01386 / m.$. The c.d.f. for X is

\begin{displaymath}
F(x) \; = \; 1 - \exp(-.01386 x) .\end{displaymath}

(a)

\begin{displaymath}
P[ X \le 100 ] \; = \; 
1- \exp(-1.386) \; = \; 0.7499 .\end{displaymath}

\begin{displaymath}
P[ X \le 200 ] \; = \; 0.9375 .\end{displaymath}

\begin{displaymath}
P[ 100 < X \le 200 ] \; = \; 
.9375 - .7499 \; = \; .1876 .\end{displaymath}

(b) By the formulae on the bottom of p. 174,

\begin{displaymath}
\mu \; = \; \sigma \; = \; 1/ \lambda .\end{displaymath}

You can calculate this as 72.15, but we won't need it. We have

\begin{displaymath}
P[ X \gt \mu + 2 \sigma ] \; = \; 
P[ X \gt 3 / \lambda ] \;...
 ...[ - \lambda * (3/\lambda) ]
 \; = \; \exp[ -3] \; = \; 0.0498 .\end{displaymath}

(c) Solving for F-1 (.5):

\begin{displaymath}
1 - \exp[ - \lambda x ] \; = \; .5
\; \Longrightarrow \;
x \...
 ...\; - \log(.5)/\lambda \; = \; 
\log(2)/\lambda \; = \; 
50.01 .\end{displaymath}



Dennis Cox
2/26/2001