next up previous
Next: Solution to Exercise 5.30. Up: No Title Previous: Solution to Exercise 5.06.

Solution to Exercise 5.22.

  We have reproduced the table of the joint p.m.f. but summed the rows and columns to get the marginal p.m.f.'s.


 
 
Table 4: Table of joint p.m.f. with marginal p.m.f.'s shown.
  y=0 y=5 y=10 y=15 pX
x=0 0.02 0.06 0.02 0.10 0.20
x=5 0.04 0.15 0.20 0.10 0.49
x=10 0.01 0.15 0.14 0.01 0.31
pY 0.07 0.36 0.36 0.21 1.00

(a) Using the marginal p.m.f.'s we get

\begin{displaymath}
E[X] \; = \; 0*0.20 + 5*0.49 + 10*0.31
 \; = \; 5.55 .\end{displaymath}

\begin{displaymath}
E[Y] \; = \; 
0*0.07 + 5*0.36 + 10*0.36 + 15*0.21
 \; = \; 8.55 .\end{displaymath}

(b) Let $Z = \max{X,Y}$. Getting the p.m.f. of Z:

\begin{displaymath}
p_Z (z) \; = \; \left\{ \begin{array}
{rcl}
.02 & & \mbox{if...
 ... .10 + .10 + .01 = .21 & & \mbox{if } z = 15\end{array} \right.\end{displaymath}

For example, looking at z=5, the event [Z=10] can be decomposed into the mutually exclusive events $[X = 0 \, \& \, Y=5]$ or $[X = 5 \, \& \, Y=5]$ or $[X = 5 \, \& \, Y=0]$. Note the pattern of the values that are ``traced out'' in the table in this event. Checking that the p.m.f. values sum to 1:

.02 + .25 + .52 + .21 = 1 .

Thus,

\begin{displaymath}
E[Z] \; = \; 0*.02 + 5*.25 + 10*.52 + 15*.21
 \; = \; 9.6 .\end{displaymath}


next up previous
Next: Solution to Exercise 5.30. Up: No Title Previous: Solution to Exercise 5.06.
Dennis Cox
3/10/2001