next up previous
Next: Solution to Exercise 5.54. Up: No Title Previous: No Title

Solution to Exercise 5.48.

  (a) Given information is:

\begin{displaymath}
\mu \; = \; E[X_i] \; = \; 50 , \quad 
\sigma^2 \; = \; V[X_i] \; = \; 1 , \quad \&
n \; = \; 100 .\end{displaymath}

Therefore,

\begin{displaymath}
E[\bar{X}] \; = \; \mu \; = \; 50 ,\end{displaymath}

and

\begin{displaymath}
V[\bar{X}] \; = \; \sigma^2/n \; = \; 1/100 ,\end{displaymath}

so for the standard deviation (or standard error) of $\bar{X}$ we have

\begin{displaymath}
\sigma_{\bar{X}} \; = \; \sqrt{1/100} \; = \; .1 .\end{displaymath}

Letting Z denote a N(0,1) r.v. we have by the CLT,

\begin{displaymath}
P[ 49.75 < \bar{X} < 50.25 ] \; = \; 
P \left[ \frac{49.75-5...
 ...ac{\bar{X}-\mu}{\sigma_{\bar{X}}}
< \frac{50.25-50}{.1} \right]\end{displaymath}

\begin{displaymath}
\; \doteq \;
P[ -2.5 < Z < 2.5 ] \; = \; 
\Phi(2.5) - \Phi(-2.5) \; = \; 
.9938 -.0062 \; = \; .9876 .\end{displaymath}

(b) Changing the above with

\begin{displaymath}
\mu \; = \; 49.8 ,\end{displaymath}

we have

\begin{displaymath}
P[ 49.75 < \bar{X} < 50.25 ] \; = \; 
P \left[ \frac{49.75-4...
 ...{\bar{X}-\mu}{\sigma_{\bar{X}}}
< \frac{50.25-49.8}{.1} \right]\end{displaymath}

\begin{displaymath}
\; \doteq \;
P[ -0.5 < Z < 4.5 ] \; = \; 
\Phi(4.5) - \Phi(-0.5) \; = \; 
1.000-.3085 \; = \; .6115 .\end{displaymath}

Note that Table 3 stops tabulating $\Phi(z)$ at z = 3.49, and $\Phi(3.49) = 0.9998$, so we can safely take $\Phi(4.5) = 1$.



Dennis Cox
3/22/2001