next up previous
Next: Solution to Exercise 6.06. Up: No Title Previous: Solution to Exercise 5.48.

Solution to Exercise 5.54.

  We are given

\begin{displaymath}
\mu \; = \; E[X_i] \; = \; 2.65 , \quad
\sigma \; = \; \sqrt{V[X_i]} \; = \; .85 .\end{displaymath}

Note that we are told that the Xi's are normally distributed, so

\begin{displaymath}
Z \; = \; \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \end{displaymath}

is a N(0,1) r.v. for all sample sizes, i.e. no appeal to the CLT is necessary.

(a) Given that n = 25, we have that

\begin{displaymath}
P[ \bar{X} \le 3.00 ] \; = \; 
P \left[ \frac{\bar{X}-\mu}{\sigma/\sqrt{n}}
\le \frac{3.00-2.65}{.85/\sqrt{25}} \right]\end{displaymath}

\begin{displaymath}
\; = \; P[ Z \le 2.06 ] \; = \; 
\Phi(2.06) \; = \; .9803\end{displaymath}

For the second part, we have

\begin{displaymath}
P[ 2.65 < \bar{X} \le 3.00 ]
 \; = \; 
P \left[ \frac{2.65-2...
 ...u}{\sigma/\sqrt{n}}
\le \frac{3.00-2.65}{.85/\sqrt{25}} \right]\end{displaymath}

\begin{displaymath}
\; = \; P[ 0 < Z \le 2.06 ] \; = \; 
\Phi(2.06) - \Phi(0) \; = \; 
.9803 - .5000 \; = \; .4803 .\end{displaymath}

(b) We want to find n so that

\begin{displaymath}
P[ \bar{X} \le 3.00 ] \; = \; .99 .\end{displaymath}

Now from Table 4.1 on p. 163 we have that

\begin{displaymath}
P[Z \le 2.33] \; = \; .99 .\end{displaymath}

Thus, we want

\begin{displaymath}
\frac{3.00-2.65}{.85/\sqrt{n}} \; = \; 2.33 .\end{displaymath}

Algebraic manipulations give

\begin{displaymath}
\frac{0.35}{2.33} \; = \; .85/\sqrt{n}.\end{displaymath}

\begin{displaymath}
\frac{2.33}{0.35} \; = \; \sqrt{n}/.85\end{displaymath}

\begin{displaymath}
n \; = \; \left( 2.33*.85/.35 \right)^2
 \; = \; 32.02 .\end{displaymath}

Of course, we can't take n = 32.02 since n must be a whole number. Obviously, n = 32 will get us pretty close, but the problem says ``at least .99'' so we have to take n = 33 since n=32 is slightly too small.



Dennis Cox
3/22/2001