next up previous
Next: About this document ... Up: No Title Previous: Solution to Exercise 6.06.

Solution to Exercise 6.12.

  Showing that $\hat{\sigma}^2$ is and unbiased estimator of $\sigma^2$ means showing that $E[\hat{\sigma}^2$ is $\sigma^2$. Now we can split the fraction in the definition of $\hat{\sigma}^2$ as in

\begin{displaymath}
\hat{\sigma}^2 \; = \; 
\frac{n_1 - 1}{n_1 + n_2 -2} S_1^2 \, + \, 
\frac{n_2 - 1}{n_1 + n_2 -2} S_2^2\end{displaymath}

Using the linearity property of expectation and that each Si2 is unbiased and unbiased estimator of $\sigma^2$we have

\begin{displaymath}
E[ \hat{\sigma}^2 ] \; = \; 
\frac{n_1 - 1}{n_1 + n_2 -2} E[S_1^2] \, + \, 
\frac{n_2 - 1}{n_1 + n_2 -2} E[S_2^2]\end{displaymath}

\begin{displaymath}
\; = \; 
\frac{n_1 - 1}{n_1 + n_2 -2} \sigma^2 \, + \, 
\frac{n_2 - 1}{n_1 + n_2 -2} \sigma^2\end{displaymath}

\begin{displaymath}
\; = \; 
\left[
\frac{n_1 - 1}{n_1 + n_2 -2} \, + \, 
\frac{n_2 - 1}{n_1 + n_2 -2} 
\right] \sigma^2\end{displaymath}

\begin{displaymath}
\; = \; 
\frac{n_1-1+n_2-1}{n_1 + n_2 -2} \sigma^2
 \; = \; \sigma^2\end{displaymath}

as desired.

Note: One can see that any statistic of the form

\begin{displaymath}
T \; = \; a S_1^2 + (1-a) S_2^2 ,\end{displaymath}

where a is a conastant will be an unbiased estimator of $\sigma^2$.



Dennis Cox
3/22/2001