Two-way Analysis of Variance
Analysis of Variance for Yield
Source DF SS MS F P
Formulat 1 2253.44 2253.44 376.27 0.000
Speed 2 230.81 115.41 19.27 0.000
Interaction 2 18.58 9.29 1.55 0.252
Error 12 71.87 5.99
Total 17 2574.70
Individual 95% CI
Formulat Mean --------+---------+---------+---------+---
1 187.03 (-*--)
2 164.66 (-*--)
--------+---------+---------+---------+---
168.00 175.00 182.00 189.00
Individual 95% CI
Speed Mean --------+---------+---------+---------+---
60 177.8 (------*------)
70 170.8 (------*-------)
80 178.9 (------*-------)
--------+---------+---------+---------+---
171.0 174.0 177.0 180.0
(a) The interaction was not significant (p = 0.252), so I guess the answer is, ``No, there does not appear to be an interaction ...''
(b) Bot of the main effects are significant (p = 0.000 in both cases), so the yield does appear to depend on both speed and formulation.
(c) The main effects:
| Factor | Level | Symbol | Estimate |
| Formulation | 1 | 187.03 | |
| Formulation | 2 | 164.66 | |
| Speed | 60 | 177.8 | |
| Speed | 70 | 170.8 | |
| Speed | 80 | 178.9 |
(d) I asked to store the fitted values and residuals, so they appear in the printout of the data set below:
| Yield | Speed | Formulation | RESI1 | FITS1 |
| 189.7 | 60 | 1 | 0.23333 | 189.467 |
| 188.6 | 60 | 1 | -0.86667 | 189.467 |
| 190.1 | 60 | 1 | 0.63333 | 189.467 |
| 185.1 | 70 | 1 | 4.50000 | 180.600 |
| 179.4 | 70 | 1 | -1.20000 | 180.600 |
| 177.3 | 70 | 1 | -3.30000 | 180.600 |
| 189.0 | 80 | 1 | -2.03333 | 191.033 |
| 193.0 | 80 | 1 | 1.96667 | 191.033 |
| 191.1 | 80 | 1 | 0.06667 | 191.033 |
| 165.1 | 60 | 2 | -1.10000 | 166.200 |
| 165.9 | 60 | 2 | -0.30000 | 166.200 |
| 167.6 | 60 | 2 | 1.40000 | 166.200 |
| 161.7 | 70 | 2 | 0.66667 | 161.033 |
| 159.8 | 70 | 2 | -1.23333 | 161.033 |
| 161.6 | 70 | 2 | 0.56667 | 161.033 |
| 163.3 | 80 | 2 | -3.43333 | 166.733 |
| 166.6 | 80 | 2 | -0.13333 | 166.733 |
| 170.3 | 80 | 2 | 3.56667 | 166.733 |
(e) The normal probability plot appears here. It looks pretty good. However, the plot of residuals vs. fitted values which appears here shows evidence that there is not a constant variance.