next up previous
Next: . Up: No Title Previous: .

.

  See Problem Here

Solutions: (a) Let X be Judy's potassium level on a random day. We want to compute P[X < 3.5], given that X is normally distributed with mean $\mu = 3.8$ and standard deviation $\sigma = .2$. Letting

\begin{displaymath}
Z \; = \; \frac{X-\mu}{\sigma}\end{displaymath}

we want

\begin{displaymath}
P \left[ Z < \frac{3.5-3.8}{.2} \right]
 \; = \; 
P [ Z < -1.5 ]
 \; = \; 
0.066807 .\end{displaymath}

(b) This just changes things to

\begin{displaymath}
P \left[ Z < \frac{3.5-3.8}{.3} \right]
 \; = \; 
P [ Z < -1.0 ]
 \; = \; 
0.158655 .\end{displaymath}

(c) I see from the table that

\begin{displaymath}
P[ Z < -.5] \; = \; 0.308538 .\end{displaymath}

Since

\begin{displaymath}
P[ X < 3.5 ] \; = \; 
P \left[ \frac{X-\mu}{\sigma} < \frac{3.5-\mu}{.3} \right]
 \; = \; 
P[ Z < -.5] \; = \; 0.308538 ,\end{displaymath}

we have

\begin{displaymath}
\frac{3.5-\mu}{.3} \; = \; -.5\end{displaymath}

so

\begin{displaymath}
3.5-\mu \; = \; (-.5)*(.3)
\quad \Longrightarrow \quad
\mu \; = \; 3.5 - (-.5)*(.3) \; = \; 3.65 .\end{displaymath}



Problems? Questions? (I may have made a mistake, so don't hestitate to ask) dcox@stat.rice.edu
Dennis Cox
3/12/2001