next up previous
Next: . Up: No Title Previous: .

.

  Let A and B be events in a sample space, and suppose

\begin{displaymath}
P(A) \; = \; .4, \quad P(B) \; = \; .5 .\end{displaymath}

Calculate $P(A \cup B)$ if

(a) A and B are independent.

Solution: The general formula is

\begin{displaymath}
P(A \cup B) \; = \; P(A) + P(B) - P(A \cap B) .\end{displaymath}

When A and B are independent

\begin{displaymath}
P(A \cap B) \; = \; P(A) P(B) \; = \; .5 * .4 \; = \; .2 .\end{displaymath}

Hence

\begin{displaymath}
P(A \cup B) \; = \; .4 + .5 - .2 \; = \; .7 .\end{displaymath}

(b) A and B are mutually exclusive.

Solution: Axiom 3 of probability says that when A and B are mutually exclusive

\begin{displaymath}
P(A \cup B) \; = \; P(A) + P(B) .\end{displaymath}

Hence

\begin{displaymath}
P(A \cup B) \; = \; .4 + .5 \; = \; .9 .\end{displaymath}



Problems? Questions? (I may have made a mistake, so don't hestitate to ask) dcox@stat.rice.edu
Dennis Cox
3/12/2001