next up previous
Next: Solution to Exercise 3.69. Up: No Title Previous: Solution to Exercise 3.48.

Solution to Exercise 3.62.

  (a)

\begin{displaymath}
P[X = 2] \; = \; \frac{
\left( \begin{array}
{c} 6 \\  2 \en...
 ...t)
}{
\left( \begin{array}
{c} 15 \\  5 \end{array} \right)
} .\end{displaymath}

Now

\begin{displaymath}
\left( \begin{array}
{c} 6 \\  2 \end{array} \right)
 \; = \; 
\frac{6 * 5}{2} \; = \; 15 ,\end{displaymath}

and

\begin{displaymath}
\left( \begin{array}
{c} 9 \\  3 \end{array} \right)
 \; = \; 
\frac{ 9 * 8 * 7 }{ 2 * 3 }
 \; = \; 84 ,\end{displaymath}

and

\begin{displaymath}
\left( \begin{array}
{c} 15 \\  5 \end{array} \right)
 \; = \; 
\frac{ 15 * 14 * 13 * 12 * 11}{2 * 3 * 4 * 5}
 \; = \; 
3003 .\end{displaymath}

Finally,

\begin{displaymath}
P[X = 2] \; = \; \frac{15 * 84}{3003} \; = \; 0.4195804 .\end{displaymath}

(b)

\begin{displaymath}
P[ X = 1 ] \; = \; 
\frac{
\left( \begin{array}
{c} 6 \\  1 ...
 ...t)
}{
\left( \begin{array}
{c} 15 \\  5 \end{array} \right)
} .\end{displaymath}

Now

\begin{displaymath}
\left( \begin{array}
{c} 6 \\  1 \end{array} \right)
 \; = \; 6 ,\end{displaymath}

\begin{displaymath}
\left( \begin{array}
{c} 9 \\  4 \end{array} \right)
 \; = \; \frac{9 * 8 * 7 * 6}{2 * 3 * 4}
 \; = \; 126 .\end{displaymath}

So

\begin{displaymath}
P[X = 1] \; = \; \frac{6 * 126}{3003} \; = \; 
0.2517483 .\end{displaymath}

Also we need to compute

\begin{displaymath}
P[ X = 0 ] \; = \; 
\frac{
\left( \begin{array}
{c} 6 \\  0 ...
 ...t)
}{
\left( \begin{array}
{c} 15 \\  5 \end{array} \right)
} .\end{displaymath}

We have

\begin{displaymath}
\left( \begin{array}
{c} 6 \\  0 \end{array} \right) \; = \; 1 ,\end{displaymath}

\begin{displaymath}
\left( \begin{array}
{c} 9 \\  5 \end{array} \right)
 \; = \...
 ...4 * 5}
 \; = \; \frac{9 * 8 * 7 *6 }{2 * 3 * 4 }
 \; = \; 126 .\end{displaymath}

Hence,

\begin{displaymath}
P[ X = 0 ] \; = \; 126/3003 \; = \; 0.04195804 .\end{displaymath}

Putting it all together,

\begin{displaymath}
P[ X \le 2 ] \; = \; P[ X = 0 ] + P[ X = 1 ] + P[ X = 2 ]
 \; = \; 
0.4195804 + 0.2517483 + 0.04195804
 \; = \; 
0.7132867 .\end{displaymath}

(c)

\begin{displaymath}
P[ X \ge 2 ] \; = \; 1 - P[ X \le 1 ] \; = \; 
1 - \left\{ P...
 ...\}
 \; = \; 1 - ( 0.2517483 + 0.04195804 ) \; = \; 
0.7062937 .\end{displaymath}

(d)

\begin{displaymath}
E[X] \; = \; 
5 * \frac{6}{15} \; = \; 2 .\end{displaymath}

\begin{displaymath}
V[X] \; = \; \left( \frac{15 - 5}{15 -1} \right)
* 5 * \frac{6}{15} * \left( 1 - \frac{6}{15} \right)
 \; = \; 
0.8571429 .\end{displaymath}



Dennis Cox
2/19/2001