Next: Solution to Exercise 3.77.
Up: No Title
Previous: Solution to Exercise 3.62.
Let X be the number of male children (``failures'')
before there are two female childres (``successes'').
Then X is Negative Binomial with parameters
r = 2 and p = 0.5.
(a)
Applying the Proposition onf page 131,
![\begin{displaymath}
P[ X = x ] \; = \;
\left( \begin{array}
{c} x+1 \\ 1 \end{array} \right)
(.5)^2 (1-.5)^x
\; = \;
(x+1)(.5)^{x+2} .\end{displaymath}](img23.gif)
(b)
If the family has 4 children, then 2 are male and 2 are female,
so we are to find
![\begin{displaymath}
P[ X = 2 ] \; = \; 3*(.5)^4 \; = \; 0.1875 .\end{displaymath}](img24.gif)
(c)
``At most 4 children'' is the same as ``at most 2 males.''
First computing the probabilities of and 1 males
before the requisite 2 females:
![\begin{displaymath}
P[ X = 0 ] \; = \; (.5)^2 = 0.25 , \quad
P[ X = 1 ] \; = \; 2*(.5)^3 = 0.25 .\end{displaymath}](img25.gif)
So the probability of ``At most 4 children'' is
![\begin{displaymath}
P[ X \le 2 ] \; = \; 0.1875 + 0.25 + 0.25 \; = \; 0.6875 .\end{displaymath}](img26.gif)
(d)
![\begin{displaymath}
E[X] \; = \; \frac{2*(1-.5)}{.5} \; = \; 2 .\end{displaymath}](img27.gif)
The total number of children will be X+2, so the
expected number of children will be
![\begin{displaymath}
E[X+2] \; = \; E[X] + 2 \; = \; 4 .\end{displaymath}](img28.gif)
Dennis Cox
2/19/2001