next up previous
Next: Solution to Exercise 5.06. Up: No Title Previous: Solution to Exercise 4.84.

Solution to Exercise 5.02.

  (a) The assumed independence gives

\begin{displaymath}
p_{XY} (x,y) \; = \; p_X (x) p_Y (y) .\end{displaymath}

The results are shown in Table 2.


 
 
Table 1: Table of joint probability mass function for this exercise. Values of X appear in column 1 and values of Y in row 1. For example, pXY (1,4) = pX (1) pY (4) = .3 * .2 = .06.
    1 2 3 4
  .300 .050 .025 .025 .100
1 .180 .030 .015 .015 .060
2 .120 .020 .010 .010 .040

(b) Adding the values from the table:

\begin{displaymath}
P[X \le 1 \, \& \, Y \le 1 ] \; = \; 
p_{XY} (0,0) + p_{XY} (0,1) + p_{XY} (1,0) + p_{XY} (1,1)\end{displaymath}

\begin{displaymath}
\; = \; 
.30 + .05 + .18 + .03
 \; = \; 
.56\end{displaymath}

Computing the individual probabilities:

\begin{displaymath}
P[X \le 1 ] \; = \; .5 + .3 \; = \; .8 ,\end{displaymath}

\begin{displaymath}
P[Y \le 1 ] \; = \; .6 + .1 \; = \; .7 ,\end{displaymath}

and of course

\begin{displaymath}
P[X \le 1 \, \& \, Y \le 1 ] \; = \; 
P[X \le 1 ] * P[ Y \le 1 ] \; = \; 
.8 * .7 = .56 .\end{displaymath}

(c)

\begin{displaymath}
P[X + Y = 0 ] \; = \; P[X = 0 \, \& \, Y = 0 ]
 \; = \; p_{XY} (0,0) \; = \; .3 .\end{displaymath}

(d)

\begin{displaymath}
P[ X + Y \le 1 ] \; = \; 
p_{XY} (0,0) + p_{XY} (0,1) + p_{XY} (1,0)\end{displaymath}

\begin{displaymath}
\; = \; 
.30 + .05 + .18
 \; = \; 
.53\end{displaymath}


next up previous
Next: Solution to Exercise 5.06. Up: No Title Previous: Solution to Exercise 4.84.
Dennis Cox
3/10/2001