next up previous
Next: Solution to Exercise 1.

Solutions to Final Exam
STAT 431/531

Dennis D. Cox

Notations; some useful distributions:
+
Indicator functions:

\begin{displaymath}
I_A (x) \; = \; \left\{ \begin{array}{ccl}
1 & & \mbox{if ...
...\in A \\
0 & & \mbox{if } x \notin A .
\end{array} \right.
\end{displaymath}

+
uniform(a,b) has pdf $f(x) = (b-a)^{-1} I_{(a,b)} (x)$, $a < b$.
+
exponential($\mu$) has pdf $f(x) \; = \; \mu^{-1} \exp (- x /\mu) I_{(0,\infty)} (x)$, $\mu > 0$.
+
Poisson($\mu$) has pmf $f(x) \; = \; \mu^x e^{- \mu}/x! I_{N} (x)$ where $N = \{ 0 , 1 , 2, \ldots \}$ is the set of nonnegative integers (natural numbers), $\mu > 0$.
+
The binomial distribution $B(n,p)$ has pmf $f(x) = C(n,x) p^x (1-p)^{n-x}$ where $C(n,x) = n!/(x!(n-x)!)$ if $x = 0 , 1 , \ldots n \}$ and $C(n,x) = 0$ otherwise. Here, $n$ is a positive integer and $0 \le p \le 1$.
+
Bernoulli(p) is B(1,p).
+
The Gamma function satisfies

\begin{displaymath}
\alpha \Gamma(\alpha) \; = \; \Gamma(\alpha + 1) ,
\quad \Gamma(n+1) \; = \; n!, \; n = 0, 1, 2, \ldots .
\end{displaymath}

+
The gamma($\alpha$,$\beta$) distribution has pdf

\begin{displaymath}
f(x) \; = \; \frac{x^{\alpha -1}}{\Gamma(\alpha)\beta^{\alpha}}
e^{-x/\beta} I_{(0,\infty)} (x) ,
\end{displaymath}

for $\alpha > 0$ and $\beta > 0$.
+
The $\chi^2_{\nu}$ distribution is the same as the gamma($\nu/2$, $2$) distribution.




Dennis Cox 2003-01-18